Skip to main content
Log in

The synthesis and secretion of key substances in the flavonoid metabolic pathway responding to different nitrogen sources during early growth stages in Robinia pseudoacacia

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Legumes can obtain nitrogen from mineral nitrogen and symbiotic nitrogen; however, the regulatory mechanisms by which legume plants respond to various nitrogen sources are still unclear.

Methods

Here, the flavonoid metabolism profiles of Robinia pseudoacacia (black locust) in response to different nitrogen sources during the early growth stages were performed using the hydroponics method.

Results

The flavonoids were accumulated specifically responding to different nitrogen sources (symbiotic nitrogen and NO3) in the roots and root exudates of R. pseudoacacia and showed growth-stage-dependent changes in the plant growth process. More flavonoids were synthesized and secreted under nitrogen deficiency. The differential flavonoids among different treatments were significantly enriched in the flavone and flavonol biosynthesis pathway and isoflavonoid biosynthesis pathway. Liquiritigenin, naringenin, apigenin and kaempferol were not only the metabolic nodes of these two metabolic pathways but also the key nodes in the differential flavonoid network. Therefore, these four flavonoids may be the key flavonoids of R. pseudoacacia responding to different nitrogen sources.

Conclusion

Our findings provide an important insight into the adaptability of legumes to different nitrogen environments and are of great significance for understanding the molecular mechanisms underlying nitrogen utilization in legumes and will contribute to the development of sustainable agricultural practices and crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

Abbreviations

NF:

Nitrogen free

SN:

Symbiotic nitrogen

MN:

Mineral nitrogen

dpt:

days post-treatment

UPLC-MS/MS:

Ultra performance liquid chromatography tandem mass spectrometry

PCA:

Principal component analysis

HCA:

Hierarchical clustering analysis

OPLS-DA:

Orthogonal partial least squares discriminant analysis

FC:

Fold change

VIP:

Variable importance for the projection

KEGG:

Kyoto Encyclopedia of Genes and Genomes

Chl:

Leaf chlorophyll content

SL:

Shoot length

SDW:

Shoo

t dry weight

RL:

Root length

RDW:

Root dry weight

RN:

Root nitrogen content

ShN:

Shoot nitrogen content

SD:

Standard deviation

ANOVA:

One-way analysis of variance

DFs:

Differential flavonoids

References

  • Abd-Alla MH (2011) Nodulation and nitrogen fixation in interspecies grafts of soybean and common bean is controlled by isoflavonoid signal molecules translocated from shoot. Plant Soil Environ 57:453–458

    Article  CAS  Google Scholar 

  • Arfaoui A, El Hadrami A, Mabrouk Y, Sifi B, Boudabous A, El Hadrami I, Daayf F, Chérif M (2007) Treatment of chickpea with Rhizobium isolates enhances the expression of phenylpropanoid defense-related genes in response to infection by Fusarium oxysporum f. sp. ciceris. Plant Physiol Bioch 45:470–479

    Article  CAS  Google Scholar 

  • Bag S, Mondal A, Majumder A, Mondal SK, Banik A (2022) Flavonoid mediated selective cross-talk between plants and beneficial soil microbiome. Phytochem Rev 21:1739–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begum AA, Leibovitch S, Migner P, Zhang F (2001) Specific flavonoids induced nod gene expression and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments. J Exp Bot 52:1537–1543

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Qu R, Miao Y, Tang X, Zhou Y, Wang L, Geng L (2019) Untargeted liquid chromatography coupled with mass spectrometry reveals metabolic changes in nitrogen-deficient Isatis indigotica Fortune. Phytochemistry 166:112058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catford JG, Staehelin C, Larose G, Piché Y, Vierheilig H (2006) Systemically suppressed isoflavonoids and their stimulating effects on nodulation and mycorrhization in alfalfa split-root systems. Plant Soil 285:257–266

    Article  CAS  Google Scholar 

  • Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329:1–25

    Article  CAS  Google Scholar 

  • Chen H, Chou M, Wang X, Liu S, Zhang F, Wei G (2013) Profiling of differentially expressed genes in roots of Robinia pseudoacacia during nodule development using suppressive subtractive hybridization. PLoS ONE 8:e63930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Jia Y, Xu H, Wang Y, Zhou Y, Huang Z, Yang L, Li Y, Chen L, Guo J (2020) Ammonium nutrition inhibits plant growth and nitrogen uptake in citrus seedlings. Sci Hortic-Amsterdam 272:109526

    Article  CAS  Google Scholar 

  • Chen D, Liu C, Roy S, Cousins D, Stacey N, Murray JD (2015) Identification of a core set of rhizobial infection genes using data from single cell-types. Front Plant Sci 6:575

    Article  PubMed  PubMed Central  Google Scholar 

  • Chong J, Xia J (2018) MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 34:4313–4314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper JE (2004) Multiple responses of rhizobia to flavonoids during legume root infection. Adv Bot Res 41:1–62

    Article  CAS  Google Scholar 

  • Curir P, Dolci M, Galeotti F (2005) A phytoalexin-like flavonol involved in the carnation (Dianthus caryophyllus)- Fusarium oxysporum f. sp. dianthi pathosystem. J Phytopathol 153:65–67

    Article  CAS  Google Scholar 

  • Dai Z, Tan J, Zhou C, Yang X, Yang F, Zhang S, Sun S, Miao X, Shi Z (2019) The OsmiR396-Os GRF 8-OsF3H-flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa). Plant Biotechnol J 17:1657–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan M, Liu Z, Nan L, Wang E, Chen W, Lin Y, Wei G (2018) Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Microbiol Res 217:51–59

    Article  CAS  PubMed  Google Scholar 

  • García-Calderón M, Pérez-Delgado CM, Palove-Balang P, Betti M, Márquez AJ (2020) Flavonoids and isoflavonoids biosynthesis in the model legume lotus japonicus; connections to nitrogen metabolism and photorespiration. Plants 9:774

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849

    Article  CAS  PubMed  Google Scholar 

  • Guenoune D, Galili S, Phillips DA, Volpin H, Chet I, Okon Y, Kapulnik Y (2001) The defense response elicited by the pathogen Rhizoctonia solani is suppressed by colonization of the AM-fungus Glomus intraradices. Plant Sci 160:925–932

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Wan X, Niu F, Sun J, Shi C, Ye JM, Zhou C (2019) Evaluation of antiviral effect and toxicity of total flavonoids extracted from Robinia pseudoacacia cv. idaho. Biomed Pharmacother 118:109335

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Chakrabarty SK (2013) Gibberellic acid in plant: still a mystery unresolved. Plant Signal Behav 8:e25504

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63:3429–3444

    Article  CAS  PubMed  Google Scholar 

  • Haynes JG, Czymmek KJ, Carlson CA, Veereshlingam H, Dickstein R, Sherrier DJ (2004) Rapid analysis of legume root nodule development using confocal microscopy. New Phytol 163:661–668

    Article  PubMed  Google Scholar 

  • He D, Singh SK, Peng L, Kaushal R, Vílchez JI, Shao C, Wu X, Zheng S, Morcillo RJ, Paré PW (2022) Flavonoid-attracted Aeromonas sp. from the Arabidopsis root microbiome enhances plant dehydration resistance. ISME J 16:2622–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:2–32

    Google Scholar 

  • Hooper AM, Tsanuo MK, Chamberlain K, Tittcomb K, Scholes J, Hassanali A, Khan ZR, Pickett JA (2010) Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, is an allelochemical against the development of Striga. Phytochemistry 71:904–908

    Article  CAS  PubMed  Google Scholar 

  • Khalid M, Saeed-ur-Rahman BM, Dan-Feng H (2019) Role of flavonoids in plant interactions with the environment and against human pathogens - a review. J Integr Agr 18:211–230

    Article  CAS  Google Scholar 

  • Khan ZR, Midega CA, Bruce TJ, Hooper AM, Pickett JA (2010) Exploiting phytochemicals for developing a ‘push-pull’crop protection strategy for cereal farmers in Africa. J Exp Bot 61:4185–4196

    Article  CAS  PubMed  Google Scholar 

  • Leoni F, Hazrati H, Fomsgaard IS, Moonen A, Kudsk P (2021) Determination of the effect of co-cultivation on the production and root exudation of flavonoids in four legume species using LC–MS/MS analysis. J Agr Food Chem 69:9208–9219

    Article  CAS  Google Scholar 

  • Li Z, Jiang H, Yan H, Jiang X, Ma Y, Qin Y (2021) Carbon and nitrogen metabolism under nitrogen variation affects flavonoid accumulation in the leaves of Coreopsis tinctoria. PeerJ 9:e12152

    Article  PubMed  PubMed Central  Google Scholar 

  • Li P, Li YJ, Zhang FJ, Zhang GZ, Jiang XY, Yu HM, Hou BK (2017) The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant J 89:85–103

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Murray JD (2016) The role of flavonoids in nodulation host-range specificity: an update. Plants 5:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv J, Dong Y, Dong K, Zhao Q, Yang Z, Chen L (2020) Intercropping with wheat suppressed Fusarium wilt in faba bean and modulated the composition of root exudates. Plant Soil 448:153–164

    Article  CAS  Google Scholar 

  • Masaoka Y, Kojima M, Sugihara S, Yoshihara T, Koshino M, Ichihara A (1993) Dissolution of ferric phosphate by alfalfa (Medicago sativa L.) root exudates. Plant Soil 155/156:75–78

    Article  Google Scholar 

  • Mathesius U (2018) Flavonoid functions in plants and their interactions with other organisms. Plants 7:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohamad OA, Hao X, Xie P, Hatab S, Lin Y, Wei G (2012) Biosorption of copper (II) from aqueous solution using non-living Mesorhizobium amorphae strain CCNWGS0123. Microbes Environ 27:234–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Nezamivand-Chegini M, Metzger S, Moghadam A, Tahmasebi A, Koprivova A, Eshghi S, Mohammadi-Dehchesmeh M, Kopriva S, Niazi A, Ebrahimie E (2022) Integration of transcriptomic and metabolomic analyses to provide insights into response mechanisms to nitrogen and phosphorus deficiencies in soybean. Plant Sci 326:111498

    Article  PubMed  Google Scholar 

  • Okutani F, Hamamoto S, Aoki Y, Nakayasu M, Nihei N, Nishimura T, Yazaki K, Sugiyama A (2020) Rhizosphere modelling reveals spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial community. Plant Cell Environ 43:1036–1046

    Article  CAS  PubMed  Google Scholar 

  • Parvez MM, Tomita-Yokotani K, Fujii Y, Konishi T, Iwashina T (2004) Effects of quercetin and its seven derivatives on the growth of Arabidopsis thaliana and Neurospora crassa. Biochem Syst Ecol 32:631–635

    Article  CAS  Google Scholar 

  • Peck MC, Fisher RF, Long SR (2006) Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J Bacteriol 188:5417–5427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheidemann P, Wetzel A (1997) Identification and characterization of flavonoids in the root exudate of Robinia pseudoacacia. Trees 11:316–321

    Google Scholar 

  • Stewart AJ, Chapman W, Jenkins GI, Graham I, Martin T, Crozier A (2001) The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant Cell Environ 24:1189–1197

    Article  CAS  Google Scholar 

  • Sugiyama A, Yamazaki Y, Yamashita K, Takahashi S, Nakayama T, Yazaki K (2016) Developmental and nutritional regulation of isoflavone secretion from soybean roots. Biosci Biotech Bioch 80:89–94

    Article  CAS  Google Scholar 

  • Sun X, Chen F, Yuan L, Mi G (2020) The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants. Planta 251:1–14

    Article  Google Scholar 

  • Sun L, Lu Y, Yu F, Kronzucker HJ, Shi W (2016) Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. New Phytol 212:646–656

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Zhang J, Zhang Q, Li X, Li M, Yang Y, Zhou J, Wei Q, Zhou B (2021) Integrative physiological, transcriptome, and metabolome analysis reveals the effects of nitrogen sufficiency and deficiency conditions in apple leaves and roots. Environ Exp Bot 192:104633

    Article  CAS  Google Scholar 

  • Tan H, Man C, Xie Y, Yan J, Chu J, Huang J (2019) A crucial role of GA-regulated flavonol biosynthesis in root growth of Arabidopsis. Mol Plant 12:521–537

    Article  CAS  PubMed  Google Scholar 

  • Tian B, Pei Y, Huang W, Ding J, Siemann E (2021) Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant. ISME J 15:1919–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyśkiewicz K, Konkol M, Kowalski R, Rój E, Warmiński K, Krzyżaniak M, Gil Ł, Stolarski MJ (2019) Characterization of bioactive compounds in the biomass of black locust, poplar and willow. Trees 33:1235–1263

    Article  Google Scholar 

  • Veitch NC, Elliott PC, Kite GC, Lewis GP (2010) Flavonoid glycosides of the black locust tree, Robinia pseudoacacia (Leguminosae). Phytochemistry 71:479–486

    Article  CAS  PubMed  Google Scholar 

  • Vega-Hernández MC, Pérez-Galdona R, Dazzo FB, Jarabo-Lorenzo A, Alfayate MC, Leon-Barrios M (2001) Novel infection process in the indeterminate root nodule symbiosis between Chamaecytisus proliferus (tagasaste) and Bradyrhizobium sp. New Phytol 150:707–721

    Article  Google Scholar 

  • Wang L, Chen M, Lam P, Dini-Andreote F, Dai L, Wei Z (2022) Multifaceted roles of flavonoids mediating plant-microbe interactions. Microbiome 10:1–13

    Article  Google Scholar 

  • Wang X, Huo H, Luo Y, Liu D, Zhao L, Zong L, Chou M, Chen J, Wei G (2019) Type III secretion systems impact Mesorhizobium amorphae CCNWGS0123 compatibility with Robinia pseudoacacia. Tree Physiol 39:1533–1550

    Article  CAS  PubMed  Google Scholar 

  • Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, VanEtten HD (2004) Introduction of plant and fungal genes into pea (Pisum sativum L.) hairy roots reduces their ability to produce pisatin and affects their response to a fungal pathogen. Mol Plant-Microbe Interact 17:798–804

    Article  CAS  PubMed  Google Scholar 

  • Wuyts N, Swennen R, De Waele D (2006) Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plant-parasitic nematodes Radopholus similis, Pratylenchus penetrans and Meloidogyne incognita. Nematology 8: 89–101.

    Article  CAS  Google Scholar 

  • Xiao TT, Schilderink S, Moling S, Deinum EE, Kondorosi E, Franssen H, Kulikova O, Niebel A, Bisseling T (2014) Fate map of Medicago truncatula root nodules. Development 141:3517–3528

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Yu X, Liu Y, Shi Z, Li L, Xie S, Zhu G, Zhao P (2021) Comparative metabolomics analysis reveals the color variation between heartwood and sapwood of chinese fir (Cunninghamia lanceolata (Lamb.) Hook. Ind Crop Prod 169:113656

    Article  CAS  Google Scholar 

  • Yu P, He X, Baer M, Beirinckx S, Tian T, Moya YA, Zhang X, Deichmann M, Frey FP, Bresgen V (2021) Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat Plants 7:481–499

    Article  CAS  PubMed  Google Scholar 

  • Zhalnina K, Louie KB, Hao Z, Mansoori N, Da Rocha UN, Shi S, Cho H, Karaoz U, Loqué D, Bowen BP, Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, Cho H, Karaoz U, Loqué D, Bowen BP, Firestone MK, Northen TR, Brodie EL (2018) Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3:470–480

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Subramanian S, Stacey G, Yu O (2009) Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J 57:171–183

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Chen M, Li Z, Zhao Y, Yang H, Zha L, Yu C, Wu Y, Song X (2020) The response of volvariella volvacea to low-temperature stress based on metabonomics. Front Microbiol 11:1787

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao YH, Jia X, Wang WK, Liu T, Huang SP, Yang MY (2016) Growth under elevated air temperature alters secondary metabolites in Robinia pseudoacacia L. seedlings in Cd-and Pb-contaminated soils. Sci Total Environ 565:586–594

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Reddy KR, Kakani VG, Reddy VR (2005) Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. Eur J Agron 22:391–403

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Key Research & Development program of Shaanxi Province (No. 2020ZDLNY07-09), and National Natural Science Foundation of China (No. 41977052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minxia Chou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: Ulrike Mathesius.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 34.9 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Shen, Y., Shi, R. et al. The synthesis and secretion of key substances in the flavonoid metabolic pathway responding to different nitrogen sources during early growth stages in Robinia pseudoacacia. Plant Soil 494, 373–393 (2024). https://doi.org/10.1007/s11104-023-06286-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-06286-y

Keywords

Navigation