Skip to main content
Log in

Nitrogen cycling-related functional genes exhibit higher sensibility in soil than leaf phyllosphere of different tree species in the subtropical forests

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Forest ecosystems provide a large area inhabited by functional microbial communities and thus have an important influence on nitrogen (N) cycling in terrestrial ecosystems. However, little is known about how tree species alter the functional microorganisms involved in the leaf phyllosphere and soil N cycling.

Methods

The impacts of seven common subtropical tree species across different mycorrhizal types and leaf phenology on the abundance of N cycling-related functional genes were evaluated in phyllosphere and soil.

Results

We found that deciduous trees harbored significantly higher functional gene abundance of nifH, narK, and nrfA by 26.2–46.4% compared to evergreen trees in soils. Ectomycorrhizal trees harbored significantly higher gene abundance of nifH, AOA amoA, AOB amoA, nxrA, nxrB, comammox amoA, narG, narK, nirS, and nrfA by 22.1–131% in comparison to arbuscular mycorrhizal trees in soils. Leaf dry matter content, leaf C and N contents, and litter C and N contents were important drivers of soil N cycling-related functional genes. Nonetheless, there was no significant association between the N cycling-related functional genes in the phyllosphere and soil. Leaf phenology and mycorrhizal type had little effect on N cycling-related functional genes in the phyllosphere. Root density was the best predictor for leaf phyllosphere N cycling-related functional genes.

Conclusions

Our results demonstrated that tree functional traits have a crucial role in driving leaf phyllosphere and soil functional microorganisms, and emphasized the potential of manipulating tree mycorrhizal type and taxonomic identity to increase ecosystem N retention in subtropical forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bahnmann B, Mašínová T, Halvorsen R, Davey ML, Sedlák P, Tomšovský M, Baldrian P (2018) Effects of oak, beech and spruce on the distribution and community structure of fungi in litter and soils across a temperate forest. Soil Biol Biochem 119:162–173. https://doi.org/10.1016/j.soilbio.2018.01.021

    Article  CAS  Google Scholar 

  • Bahram M, Kõljalg U, Kohout P, Mirshahvaladi S, Tedersoo L (2013) Ectomycorrhizal fungi of exotic pine plantations in relation to native host trees in Iran: evidence of host range expansion by local symbionts to distantly related host taxa. Mycorrhiza 23:11–19

    Article  PubMed  Google Scholar 

  • Baldocchi DD, Ma S, Rambal S, Misson L, Ourcival J-M, Limousin J-M, Pereira J, Papale D (2010) On the differential advantages of evergreenness and deciduousness in mediterranean oak woodlands: a flux perspective. Ecol Appl 20:1583–1597

    Article  PubMed  Google Scholar 

  • Baldrian P (2017) Microbial activity and the dynamics of ecosystem processes in forest soils. Curr Opin Microbiol 37:128–134

    Article  PubMed  CAS  Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter: decomposition, humus formation, carbon sequestration. Springer Verlag, Berlin

    Book  Google Scholar 

  • Bonfante P, Anca I-A (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  PubMed  CAS  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Ver Loren E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838. https://doi.org/10.1146/annurev-arplant-050312-120106

    Article  PubMed  CAS  Google Scholar 

  • Cantarel AA, Pommier T, Desclos-Theveniau M, Diquélou S, Dumont M, Grassein F, Kastl E-M, Grigulis K, Laîné P, Lavorel S (2015) Using plant traits to explain plant–microbe relationships involved in nitrogen acquisition. Ecology 96:788–799

    Article  PubMed  Google Scholar 

  • Churchland C, Grayston SJ (2014) Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Front Microbiol 5:261

    Article  PubMed  PubMed Central  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Crowther TW, Thomas SM, Maynard DS, Baldrian P, Covey K, Frey SD, van Diepen LT, Bradford MA (2015) Biotic interactions mediate soil microbial feedbacks to climate change. Proc Natl Acad Sci USA 112:7033–7038. https://doi.org/10.1073/pnas.1502956112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Vries FT, Bardgett RD (2016) Plant community controls on short-term ecosystem nitrogen retention. New Phytol 210:861–874

    Article  PubMed  PubMed Central  Google Scholar 

  • Ernfors M, Rütting T, Klemedtsson L (2011) Increased nitrous oxide emissions from a drained organic forest soil after exclusion of ectomycorrhizal mycelia. Plant Soil 343:161–170

    Article  CAS  Google Scholar 

  • FAO and UNEP (2020) The State of the World’s Forests 2020. Forests, Biodiversity and People. Rome: FAO. https://doi.org/10.4060/CA8642EN

  • Freschet GT, Roumet C, Comas LH, Weemstra M, Bengough AG, Rewald B, Bardgett RD, De Deyn GB, Johnson D, Klimešová J, Freschet GT, Roumet C, Comas LH, Weemstra M, Bengough AG, Rewald B, Bardgett RD, De Deyn GB, Johnson D, Klimešová J, Lukac M, McCormack ML, Meier IC, Pagès L, Poorter H, Prieto I, Wurzburger N, Zadworny M, Bagniewska‐Zadworna A, Blancaflor EB, Brunner I, Gessler A, Hobbie SE, Iversen CM, Mommer L, Picon‐Cochard C, Postma JA, Rose L, Ryser P, Scherer‐Lorenzen M, Soudzilovskaia NA, Sun T, Valverde‐Barrantes OJ, Weigelt A, York LM, Stokes A (2021) Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol 232:1123–1158

    Article  PubMed  Google Scholar 

  • Fürnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A (2008) Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J 2:561–570

    Article  PubMed  Google Scholar 

  • García-Parisi PA, Omacini M (2017) Arbuscular mycorrhizal fungi can shift plant-soil feedback of grass-endophyte symbiosis from negative to positive. Plant Soil 419:13–23. https://doi.org/10.1007/s11104-017-3216-y

    Article  CAS  Google Scholar 

  • Gray JT, Schlesinger WH (1983) Nutrient use by evergreen and deciduous shrubs in southern California: II. Experimental investigations of the relationship between growth, nitrogen uptake and nitrogen availability.  J Ecol 43–56

  • Han W, Fang J, Guo D, Zhang Y (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168:377–385

    Article  PubMed  CAS  Google Scholar 

  • Hartmann M, Niklaus PA, Zimmermann S, Schmutz S, Kremer J, Abarenkov K, Luscher P, Widmer F, Frey B (2014) Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J 8:226–244. https://doi.org/10.1038/ismej.2013.141

    Article  PubMed  CAS  Google Scholar 

  • He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di H (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a chinese upland red soil under long-term fertilization practices. Environ Microbiol 9:2364–2374

    Article  PubMed  CAS  Google Scholar 

  • Hedin LO (2004) Global organization of terrestrial plant–nutrient interactions. Proc Natl Acad Sci 101:10849–10850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hodson AK, Ferris H, Hollander AD, Jackson LE (2014) Nematode food webs associated with native perennial plant species and soil nutrient pools in California riparian oak woodlands. Geoderma 228:182–191

    Article  Google Scholar 

  • Jiao S, Yang Y, Xu Y, Zhang J, Lu Y (2020) Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J 14:202–216. https://doi.org/10.1038/s41396-019-0522-9

    Article  PubMed  Google Scholar 

  • Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci USA 111:13715–13720. https://doi.org/10.1073/pnas.1216057111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, Von Mering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390

    Article  PubMed  CAS  Google Scholar 

  • Knops J, Bradley K, Wedin D (2002) Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecol Lett 5:454–466

    Article  Google Scholar 

  • Laforest-Lapointe I, Messier C, Kembel SW (2016) Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4. https://doi.org/10.1186/s40168-016-0174-1

  • Laughlin DC (2011) Nitrification is linked to dominant leaf traits rather than functional diversity. J Ecol 99:1091–1099. https://doi.org/10.1111/j.1365-2745.2011.01856.x

    Article  Google Scholar 

  • Levy-Booth DJ, Prescott CE, Grayston SJ (2014) Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol Biochem 75:11–25. https://doi.org/10.1016/j.soilbio.2014.03.021

    Article  CAS  Google Scholar 

  • Lin G, McCormack ML, Ma C, Guo D (2017) Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests. New Phytol 213:1440–1451. https://doi.org/10.1111/nph.14206

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Brettell LE, Singh B (2020) Linking the phyllosphere microbiome to plant health. Trends Plant Sci 25:841–844. https://doi.org/10.1016/j.tplants.2020.06.003

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Wang X, Liu L, Wu X, Xia Z, Guo Q (2022) Rhizosphere soil bacterial communities and nitrogen cycling affected by deciduous and evergreen tree species. Ecol Evol 12:e9103

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreira JCF, Brum M, de Almeida LC, Barrera-Berdugo S, de Souza AA, de Camargo PB, Oliveira RS, Alves LF, Rosado BHP, Lambais MR (2021) Asymbiotic nitrogen fixation in the phyllosphere of the Amazon forest: changing nitrogen cycle paradigms. Sci Total Environ 773:145066

    Article  PubMed  CAS  Google Scholar 

  • Papen H, Gessler A, Zumbusch E, Rennenberg H (2002) Chemolithoautotrophic nitrifiers in the phyllosphere of a spruce ecosystem receiving high atmospheric nitrogen input. Curr Microbiol 44:56–60

    Article  PubMed  CAS  Google Scholar 

  • Prescott CE, Grayston SJ (2013) Tree species influence on microbial communities in litter and soil: current knowledge and research needs. For Ecol Manag 309:19–27

    Article  Google Scholar 

  • Putz FE, Redford KH, Robinson JG, Fimbel R, Blat GM (2000) Biodiversity conservation in the context of tropical forest management. Rome

  • Semchenko M, Leff JW, Lozano YM, Saar S, Davison J, Wilkinson A, Jackson BG, Pritchard WJ, De Long JR, Oakley S, Semchenko M, Leff JW, Lozano YM, Saar S, Davison J, Wilkinson A, Jackson BG, Pritchard WJ, De Long JR, Oakley S, Mason KE, Ostle NJ, Baggs EM, Johnson D, Fierer N, Bardgett RD (2018) Fungal diversity regulates plant-soil feedbacks in temperate grassland. Sci Adv 4:eaau4578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi X, Wang J, Müller C, Hu H-W, He J-Z, Wang J, Huang Z (2020) Dissimilatory nitrate reduction to ammonium dominates soil nitrate retention capacity in subtropical forests. Biol Fertil Soils 56:785–797. https://doi.org/10.1007/s00374-020-01457-w

    Article  CAS  Google Scholar 

  • Shi X, Wang J, Lucas-Borja ME, Wang Z, Li X, Huang Z (2021) Microbial diversity regulates ecosystem multifunctionality during natural secondary succession. J Appl Ecol. https://doi.org/10.1111/1365-2664.14015

    Article  Google Scholar 

  • Singavarapu B, Beugnon R, Bruelheide H, Cesarz S, Du J, Eisenhauer N, Wubet T (2022) Tree mycorrhizal type and tree diversity shape the forest soil microbiota. Environmental Microbiology 24(9):4236–4255

    Article  PubMed  CAS  Google Scholar 

  • Singavarapu B, Du J, Beugnon R, Cesarz S, Eisenhauer N, Xue K, Wubet T (2023) Functional Potential of Soil Microbial Communities and Their Subcommunities Varies with Tree Mycorrhizal Type and Tree Diversity. Microbiol Spect 11(2):e04578-22. https://doi.org/10.1128/spectrum.04578-22

    Article  CAS  Google Scholar 

  • Soudzilovskaia NA, van der Heijden MG, Cornelissen JH, Makarov MI, Onipchenko VG, Maslov MN, Akhmetzhanova AA, van Bodegom PM (2015) Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. New Phytol 208:280–293. https://doi.org/10.1111/nph.13447

    Article  PubMed  CAS  Google Scholar 

  • Tedersoo L, Bahram M, Zobel M (2020) How mycorrhizal associations drive plant population and community biology. Science 367:eaba1223

    Article  PubMed  CAS  Google Scholar 

  • Van Kessel MA, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJ, Kartal B, Jetten MS, Lücker S (2015) Complete nitrification by a single microorganism. Nature 528:555–559

    Article  PubMed  PubMed Central  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840. https://doi.org/10.1038/nrmicro2910

    Article  PubMed  CAS  Google Scholar 

  • Wagner MR, Lundberg DS, Del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:12151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wanek W, Portl K (2005) Phyllosphere nitrogen relations: reciprocal transfer of nitrogen between epiphyllous liverworts and host plants in the understorey of a lowland tropical wet forest in Costa Rica. New Phytol 166:577–588. https://doi.org/10.1111/j.1469-8137.2005.01319.x

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Shi X, Zheng C, Lucas-Borja ME (2022) Inhibitory effect of nitrogen deposition on soil denitrifying activity in a subtropical forest. Plant Soil 485:537–548. https://doi.org/10. 1007/ s11104- 022- 05850-2

  • Wang J, Mao J, Tan Y, Lam SK, Guo Q, Shi X (2023a) Leaf phenology rather than mycorrhizal type regulates soil nematode abundance, but collectively affects nematode diversity in seven common subtropical tree species. For Ecosyst 10. https://doi.org/10.1016/j.fecs.2023.100103

  • Wang J, Shi X, Lucas-Borja ME, Guo Q, Mao J, Tan Y, Zhang G (2023b) Soil nematode abundances drive agroecosystem multifunctionality under short-term elevated CO2 and O3. Glob Chang Biol. https://doi.org/10.1111/gcb.16546

    Article  PubMed  Google Scholar 

  • Wang J, Wang L, Tan Y, Shi X, Zhang G (2023c) Short-term elevated O3 exerts stronger effects on soil nitrification than does CO2, but jointly promotes soil denitrification. Plant Soil 486:551–560. https://doi.org/10.1007/s11104-023-05889-9

    Article  CAS  Google Scholar 

  • Wang J, Shi X, Lucas-Borja ME, Guo Q, Wang L, Huang Z (2023d) Contribution of tree species to the co-occurrence network of the leaf phyllosphere and soil bacterial community in the subtropical forests. J Environ Manag 343:118274.

    Article  CAS  Google Scholar 

  • Warmink J, Nazir R, Van Elsas J (2009) Universal and species-specific bacterial ‘fungiphiles’ in the mycospheres of different basidiomycetous fungi. Environ Microbiol 11:300–312

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Kohzu A, Suda W, Yamamura S, Takamatsu T, Takenaka A, Koshikawa MK, Hayashi S, Watanabe M (2016) Microbial nitrification in throughfall of a japanese cedar associated with archaea from the tree canopy. Springerplus 5:1596. https://doi.org/10.1186/s40064-016-3286-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson MJ, He Z, Yang X (2004) The red soils of China: their nature, management, and utilization. Kluwer Academic Publishers

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  PubMed  CAS  Google Scholar 

  • Xiang Q, Chen QL, Zhu D, Yang XR, Qiao M, Hu HW, Zhu YG (2020) Microbial functional traits in phyllosphere are more sensitive to anthropogenic disturbance than in soil. Environ Pollut 265:114954. https://doi.org/10.1016/j.envpol.2020.114954

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Zhang X, Hartley IP, Dungait JAJ, Wen X, Li D, Guo Z, Quine TA (2021) Contrasting rhizosphere soil nutrient economy of plants associated with arbuscular mycorrhizal and ectomycorrhizal fungi in karst forests. Plant Soil 470:81–93. https://doi.org/10.1007/s11104-021-04950-9

    Article  CAS  Google Scholar 

  • Zhu YG, Xiong C, Wei Z, Chen QL, Ma B, Zhou SY, Tan J, Zhang LM, Cui HL, Duan GL (2022) Impacts of global change on the phyllosphere microbiome. New Phytol 234:1977–1986. https://doi.org/10.1111/nph.17928

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32071631 and 32271679) and the Natural Science Foundation of Fujian Province (2023J06024 and 2023R1002004).

Author information

Authors and Affiliations

Authors

Contributions

XZ, JW, LW and JS performed experiments, conducted fieldwork, and analyzed data. JW and XZ drafted the manuscript. XZ, JW and MEL improved the manuscript.

Corresponding author

Correspondence to Jianqing Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Feike A. Dijkstra.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 22.7 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Wang, L., Sun, J. et al. Nitrogen cycling-related functional genes exhibit higher sensibility in soil than leaf phyllosphere of different tree species in the subtropical forests. Plant Soil 493, 173–185 (2023). https://doi.org/10.1007/s11104-023-06223-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-06223-z

Keywords

Navigation