Skip to main content
Log in

Growth response and bacterial colonization of Urochloa cultivars inoculated with different species of diazotrophs

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Urochloa species are the most planted forage used for cattle production in the tropics. Plant-bacteria interaction is cultivar dependent, and a better understanding of this fine-tuning can be useful to improve the plant growth benefits of this association. Therefore, the current study aimed at testing the performance of six Urochloa cultivars inoculated with α (Azospirillum baldaniorum Ab-Sp245 and Nitrospirillum amazonense Na-CBAmC) and β (Herbaspirillum seropedicae Hs-HRC54) Proteobacteria by evaluating plant initial growth and root colonization.

Methods

Three experiments using Hoagland’s solution, with and without N as nitrate (0-, 0.3-, and 3-mM N) and a pot experiment using soil with 0, 30, and 60 kg ha−1 of urea measured after two harvests were described. The root colonization pattern of AFP-labelled Ab-Sp245 and Hs-HRC54 in four cultivars was studied by confocal laser scanning microscope. A randomized block design evaluated biomass accumulation, roots analysis, bacterial colonization, and N, P and K accumulation.

Results

The root architecture was modified according to the strain used and Ab-Sp245 was the one with the highest growth response, especially at N middle level. This bacterium revealed a wide colonization pattern on the cultivars’ roots, except cv. Llanero. The bacterial response was dependent on the bacterial strain, plant cultivar, and nitrogen supply.

Conclusions

From the results shown, we predict that Urochloa pastures limited in N supply will benefit if inoculation using a selected strain is applied as a seed cover. Benefits can be visualized by higher biomass production and N accumulated in a shorter period of growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All the data used in this work are presented in the form of a table or figure.

Abbreviations

AFP-labeled:

Autofluorescence protein labeled

CLSM:

Confocal laser scanning microscope

Cv:

Cultivar

References

  • Alvim MJ, Botrel MA, Xavier DF (2002) As principais espécies de Brachiaria utilizadas no País. 22. ed. Juiz de Fora: Embrapa, 4 p. (Embrapa. Comunicado Técnico 22)

  • Baldani JI, Baldani VLD, Seldin L, Döbereiner J (1986) Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int J Syst Bacteriol 36:86–93. https://doi.org/10.1099/00207713-36-1-86

    Article  CAS  Google Scholar 

  • Baldani JI, Reis VM, Videira SS, Boddey LH, Baldani VLD (2014) The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil 384:413–431. https://doi.org/10.1007/s11104-014-2186-6

    Article  CAS  Google Scholar 

  • Barbosa JZ, Roberto LA, Hungria M, Corrêa RS, Magri E, Correia TD (2022) Meta-analysis of maize responses to Azospirillum brasilense inoculation in Brazil: benefits and lessons to improve inoculation efficiency. Appl Soil Ecol 170:104–276. https://doi.org/10.1016/j.apsoil.2021.104276

    Article  Google Scholar 

  • Bastián F, Cohen A, Piccoli P, Luna V, Bottini R, Baraldi R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11. https://doi.org/10.1023/A:1005964031159

    Article  Google Scholar 

  • Bauhus J, Messier C (1999) Evaluation of fine root length and diameter measurements obtained using RHIZO image analysis. Agron J 91:142–147

    Article  Google Scholar 

  • Boddey RM, Macedo R, Tarré RM, Ferreira E, de Oliveira OC, Rezende CP, Cantarutti RB, Pereira JM, Alves BJR, Urquiaga S (2004) Nitrogen cycling in Brahiaria pastures: the key to understanding the process of pasture decline. Agric Ecosyst Environ 103:389–403. https://doi.org/10.1016/j.agee.2003.12.010

    Article  CAS  Google Scholar 

  • Boddey RM, Victoria RL (1986) Estimation of biological nitrogen fixation associated with Brachiaria and Paspalum grasses using 15N-labelled organic matter and fertilizer. Plant Soil 90:265–292. https://doi.org/10.1007/BF02277403

  • Boddey RM, Rao IM, Thomas RJ (1996) Nutrient cycling and environmental impact of Brachiaria pasture. In: Miles JW, Maass BL, Valle CB do (eds) Brachiaria: The Biology, Agronomy and Improvement. CIAT Publication 259, Cali, Colombia, pp 72–86

  • Bouma TJ, Nielsen KL, Koutstaal B (2000) Sample preparation and scanning protocol for computerized analysis of root length and diameter. Plant Soil 218:185–196. https://doi.org/10.1023/A:1014905104017

    Article  CAS  Google Scholar 

  • Cassán F, Vanderleyden J, Spaepen S (2013) Physiological and agronomical aspects of phytohormone production by model Plant-Growth-Promoting Rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459. https://doi.org/10.1007/s00344-013-9362-4

    Article  CAS  Google Scholar 

  • Cazetta JO, Villela LCV (2004) Nitrate reductase activity in leaves and stems of tanner grass (Brachiaria radicans Napper). Sci Agric 61:640–648. https://doi.org/10.1590/S0103-90162004000600012

    Article  CAS  Google Scholar 

  • Clémence-Aggy N, Fidéle N, Raphael KJ, Agbor EK, Ghimire SR (2021) Quality assessment of Urochloa (syn. Brachiaria) seeds produced in Cameroon. Sci Rep 11(1):15053. https://doi.org/10.1038/s41598-021-94246-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Oliveira OC, de Oliveira IP, Alves BJR, Urquiaga S, Boddey RM (2004) Chemical and biological indicators of decline/degradation of Brachiaria pastures in the Brazilian Cerrado. Agricult Ecosyst Environ 103:289–300. https://doi.org/10.1016/j.agee.2003.12.004

    Article  CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Vande Broek A, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164. https://doi.org/10.1023/A:1004658000815

    Article  CAS  Google Scholar 

  • Duarte CFD, Cecato U, Hungria M, Fernandes HJ, Biserra TT, Galbeiro S, Toniato AKB, da Silva DR (2020) Morphogenetic and structural characteristics of Urochloa species under inoculation with plant-growth-promoting bacteria and nitrogen fertilisation. Crop Pasture Sci 71:82–89. https://doi.org/10.1071/CP18455

    Article  CAS  Google Scholar 

  • Ferreira NS, Sant’anna FH, Reis VM, Ambrosini A, Volpiano CG, Rothballer M, Schwab S, Baura VA, Balsanelli E, Pedrosa FO, Passaglia LMP, de Souza EM, Hartmann A, Cassan F, Zilli JE (2020) Genome-based reclassification of Azospirillum brasilense Ab-Sp245 as the type strain of Azospirillum baldaniorum sp. nov. Int J Syst Evol Microbiol 70(6203):6212. https://doi.org/10.1099/ijsem.0.004517

    Article  CAS  Google Scholar 

  • Ferreira RCU, Moraes ACL, Chiari L, Simeão RM, Vigna BCZ, de Souza AP (2021) An overview of the genetics and genomics of the Urochloa species most commonly used in pastures. Front Plant Sci 12:770461. https://doi.org/10.3389/fpls.2021.770461

    Article  PubMed  PubMed Central  Google Scholar 

  • Freire LR (2013) Manual de calagem e adubação do Estado do Rio de Janeiro / editor técnico, Luiz Rodrigues Freire ... [et al.]. – Brasília, DF : Embrapa ; Seropédica, RJ : Editora Universidade Rural

  • Haling RE, Yang Z, Shadwell N, Culvenor RA, Stefanski A, Ryan MH, Sandral GA, Kidd DR, Lambers H, Simpson RJ (2016) Root morphological traits that determine phosphorus-acquisition efficiency and critical external phosphorus requirement in pasture species. Funct Plant Biol 43(9):815–826. https://doi.org/10.1071/FP16037

  • Hoagland DR, Arnold DI (1950) The water-culture method for growing plants without soil. Circular Number 347. California Agricultural Experiment Station

  • Hungria M, Nogueira MA, Araujo RS (2016) Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: an environment-friendly component in the reclamation of degraded pastures in the tropics. Agricult Ecosyst Environ 221:125–131. https://doi.org/10.1016/j.agee.2016.01.024

    Article  CAS  Google Scholar 

  • Hungria M, Rondina ABL, Nunes ALP, Araújo RS, Nogueira MA (2021) Seed and leaf-spray inoculation of PGPR in brachiarias (Urochloa spp.) as an economic and environmental opportunity to improve plant growth, forage yield and nutrient status. Plant Soil 463:171–186. https://doi.org/10.1007/s11104-021-04908-x

    Article  CAS  Google Scholar 

  • Lin S-Y, Hameed A, Shen F-T, Liu Y-C, Hsu Y-H, Shahina M, Lai W-A, Young C-C (2014) Description of Niveispirillum fermenti gen. nov., sp. nov., isolated from a fermentor in Taiwan, transfer of Azospirillum irakense (1989) as Niveispirillum irakense comb. Nov., and reclassification of Azospirillum amazonense (1983) as Nitrospirillum amazonense gen. nov. Antonie Van Leewenhoek 105:1149–1162. https://doi.org/10.1007/s10482-014-0176-6

    Article  CAS  Google Scholar 

  • Lynch JP (2019) Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture. New Phytol 223:548–564. https://doi.org/10.1111/nph.15738

  • Magalhães FM, Baldani JI, Souto SM, Kuykendall JR, Döbereiner J (1983) A new acid-tolerant Azospirillum species. An Acad Bras Ci 55:417–430

    Google Scholar 

  • Martins DS, Reis VM, Schultz N, Alves BJR, Urquiaga S, Pereira W, Sousa JS, Boddey RM (2020) Both the contribution of soil nitrogen and of biological N2 fixation to sugarcane can increase with the inoculation of diazotrophic bacteria. Plant Soil 452:1–15. https://doi.org/10.1007/s11104-020-04621-1

    Article  CAS  Google Scholar 

  • Oliveira IJ, Fontes JRA, Pereira BFF, Muniz AW (2018) Inoculation with Azospirillum brasilense increase maize yield. Chem Biol Technol Agric 5:6. https://doi.org/10.1186/s40538-018-0118-z

    Article  CAS  Google Scholar 

  • Pedreira BCE, Barbosa PL, Pereira LET, Mombach MA, Domiciano LF, Pereira DH, Ferreira A (2017) Tiller density and tillering on Brachiaria brizantha cv. Marandu pastures inoculated with Azospirillum brasilense. Arq Bras Med Vet Zootec 69:1039–1046. https://doi.org/10.1590/1678-4162-9034

    Article  Google Scholar 

  • Pereira JM, Tarré RM, Macedo R, de Paula RC, Alves BJR, Urquiaga S, Boddey RM (2009) Productivity of Brachiaria humidicola pastures in the Atlantic forest region of Brazil as affected by stocking rate and the presence of a forage legume. Nutr Cycl Agroecosyst 83(179):196. https://doi.org/10.1007/s10705-008-9206-y

    Article  Google Scholar 

  • Radwan T, Mohamed ZK, Reis VM (2004) Efeito da inoculação de Azospirillum e Herbaspirillum na produção de compostos indólicos em plântulas de milho e arroz. Pesq Agropec Bras 39:987–994. https://doi.org/10.1590/S0100-204X2004001000006

    Article  Google Scholar 

  • Reis VM, Reis Junior FB, Quesada DM, de Oliveira OC, Alves BJ, Urquiaga S, Boddey RM (2001) Biological nitrogen fixation associated with tropical pasture grasses. Austral J Plant Physiol 28:837–844. https://doi.org/10.1071/pp01079

    Article  Google Scholar 

  • Reis VM, Baldani VLD, Baldani JI (2015) Isolation, identification and biochemical characterization of Azospirillum spp and other nitrogen-fixing bacteria. In: Okon Y, Creus C (eds) Cassán F. Springer, Cham, pp 3–26

    Google Scholar 

  • Reis VM, Rios FA, Braz GBP, Constantini J, Hirata E, Bife DF (2020) Agronomic performance of sugarcane inoculated with Nitrospirillum amazonense (BR11145). Rev Caatinga 33:9180926. https://doi.org/10.1590/1983-21252020v33n406rc

    Article  Google Scholar 

  • Renvoize SA, Clayton WD, Kabuye CHS (1996) Morphology, taxonomy and natural distribution of Brachiaria (Trin.) Griseb. In Brachiaria: Biology, Agronomy and Improvement. Miles J, Maass B, do Valle CB (eds) Centro Internacional de Agricultura Tropical – CIAT; Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA, Cali: Brasília, 1–15

  • Rosconi F, Davyt D, Martinez V, Martinez M, Abin-Carriquiry JA, Zane H, Butler A, de Souza EM, Fabiano E (2013) Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae. Environ Microbiol 15:916–927. https://doi.org/10.1111/1462-2920.12075

    Article  CAS  PubMed  Google Scholar 

  • Rott M (2012) Structure and assembly cues of Arabidopsis root-inhabiting bacterial communities and comparative genomics of selected Rhizobium members. Tese (Pós-doutorado). Institute for Genetics, Universität zu Köln

  • Sarruge JR, Haag HP (1974) Análises químicas em plantas. ESALQ/USP, Piracicaba, p 56

  • Schwab S (2006) Identificação e análise de genes de Herbaspirillum seropedicae regulados pela disponibilidade de amônio. 2006. Tese (Doutorado) Universidade Federal do Paraná

  • Scott AJ, Knott MA (1974) A cluster analysis method for grouping means in the analysis of variance. Biometrics, Oxford 30:507–512

    Article  Google Scholar 

  • Silva MCP, Figueiredo AF, Andreote FD, Cardoso EJBN (2013) Plant growth promoting bacteria in Brachiaria brizantha. World J Microbiol Biotechnol 29:163–171. https://doi.org/10.1007/s11274-012-1169-0

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J (2008) Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312:15–23. https://doi.org/10.1007/s11104-008-9560-1

    Article  CAS  Google Scholar 

  • Stevens PF (2001) Onwards. Angiosperm phylogeny website. Version 12, July 2012. Available at: http://www.mobot.org/MOBOT/research/APweb/ (Accessed 30, 2021)

  • Xue Y, Xueqing Q, Xinping O (2020) Insights into the effect of aggregation on lignin fluorescence and its application for microstructure analysis. Int J Biol Macromol 154:981–988. https://doi.org/10.1016/j.ijbiomac.2020.03.056

    Article  CAS  PubMed  Google Scholar 

  • Zimmer AH, Euclides Filho KP (1997) As pastagens e a pecuária de corte brasileira. In: Gomide JM (Ed.) Proceedings of the International Symposium on Animal Production Under Grazing, Viçosa, MG, Brazil, November 4–6. Universidade Federal de Viçosa, Minas Gerais, Brazil, pp. 350–379

Download references

Acknowledgements

The authors express their gratitude to the Coordination of Improvement of Higher Education Personnel – CAPES (Grant n. 001) and the Foundation Carlos Chagas de Amparo à Pesquisa do Estado do Rio de Janeiro—FAPERJ for the fellowships of GCA, BJRA, and VMR. To the National Council of Scientific and Technological Development—CNPq [grant number INCT 456133/2014-2] and fellowships of ACD, BJRA, and VMR.

Author information

Authors and Affiliations

Authors

Contributions

VMR conceived and designed research and SW designed plant colonization. TFRS conducted experiments. GCA and ACD contributed with analytical tools. All authors analyzed data. VMR, TFRs, and GCA wrote the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Veronica Massena Reis.

Additional information

Responsible Editor: Ulrike Mathesius.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, T.F.R., Schwab, S., Alves, G.C. et al. Growth response and bacterial colonization of Urochloa cultivars inoculated with different species of diazotrophs. Plant Soil 491, 333–353 (2023). https://doi.org/10.1007/s11104-023-06120-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-06120-5

Keywords

Navigation