Skip to main content
Log in

Paraburkholderia sp. GD17 improves tomato plant growth and resistance to Botrytis cinerea-induced disease

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The plant growth promoting rhizobacteria have been repeatedly addressed in improving plant growth and resistance against pathogens. This study explored the role of Paraburkholderia sp. GD17 in improving tomato plant growth and resistance to Botrytis cinerea (Bc).

Methods

Tomato roots were treated with GD17 strain, and then the leaves were inoculated with Bc. Physiological and biochemical parameters, and gene expression were analyzed.

Results

In the absence of Bc, GD17 efficiently improved plant growth, and increased photosynthetic efficiency. In the presence of Bc, GD17-bacterized plants exhibited an enhanced resistance, as indicated by 67% of disease index in non-bacterized plants, while by 24% in bacterized ones. In response to Bc, the defense reaction was reinforced in bacterized plants, as shown by enhanced antioxidative capacity and mitigated oxidative damage, as well as increased PR gene expression in bacterized plants compared with control. Photosynthesis was inhibited by Bc inoculation, to a greater degree in non-bacterized plants than in bacterized ones. In the presence of Bc, soluble sugar contents significantly increased in non-bacterized plants, while it was controlled in bacterized plants. The carbohydrate catabolism-related genes, including starch degradation, photorespiration, and pentose phosphate pathway, generally presented a higher expression in bacterized plants under Bc attack.

Conclusions

GD17 strain improved tomato plant growth by increasing the photosynthetic efficiency. GD17 enhanced plant resistance against Bc-induced disease by increasing defense and alleviating oxidative damage. Additionally, GD17 optimized the trade-off between plant growth and defense by strengthening carbohydrate metabolic regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the fndings of this study are available from the corresponding authors upon request.

References

  • AitBarka E, Gognies S, Nowak J, Audran JC, Belarbi A (2002) Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24:135–142

    Article  Google Scholar 

  • Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreño MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390

    Article  CAS  PubMed  Google Scholar 

  • Alvarez ME, Savouré A, Szabados L (2022) Proline metabolism as regulatory hub. Trends Plant Sci 27:39–55

    Article  CAS  PubMed  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473

    Article  PubMed  PubMed Central  Google Scholar 

  • Barra-Bucarei L, France Iglesias A, Gerding González M, Silva Aguayo G, Carrasco-Fernández J, Castro JF, Ortiz Campos J (2019) Antifungal activity of Beauveria bassiana endophyte against Botrytis cinerea in two Solanaceae crops. Microorganisms 8:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Ke T, Liu R, Yu J, Dong C, Cheng M, Huang J, Liu S (2015) Identification of a novel proline-rich antimicrobial peptide from Brassica napus. PLoS ONE 10(9):e0137414

    Article  PubMed  PubMed Central  Google Scholar 

  • Choquer M, Fournier E, Kunz C, Levis C, Pradier JM, Simon A, Viaud M (2007) Botrytis cinerea virulence factors: New insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett 277:1–10

    Article  CAS  PubMed  Google Scholar 

  • Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729

    Article  CAS  PubMed  Google Scholar 

  • Colmenares AJ, Aleu J, Durán-Patrón R, Collado IG, Hernández-Galán R (2002) The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. J Chem Ecol 28:997–1005

    Article  CAS  PubMed  Google Scholar 

  • Courbier S, Grevink S, Sluijs E, Bonhomme PO, Kajala K, Van Wees SCM, Pierik R (2020) Far-red light promotes Botrytis cinerea disease development in tomato leaves via jasmonate-dependent modulation of soluble sugars. Plant Cell Environ 43:2769–2781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crespo-Salvador Ó, Escamilla-Aguilar M, López-Cruz J, López-Rodas C, González-Bosch C (2018) Determination of histone epigenetic marks in Arabidopsis and tomato genes in the early response to Botrytis cinerea. Plant Cell Rep 37:153–166

    Article  CAS  PubMed  Google Scholar 

  • Danson J, Wasano K, Nose A (2000) Infection of rice plants with the sheath blight fungus causes an activation of pentose phosphate and glycolytic pathways. Eur J Plant Pathol 106:555–561

    Article  CAS  Google Scholar 

  • Elmer PA, Michailides TJ (2007) Epidemiology of Botrytis cinerea in orchard and vine crops. In: Elad et al. (eds) Botrytis: Biology, Pathology and Control. Springer, Berlin/Heidelberg, pp 243–272

  • Esmaeel Q, Miotto L, Rondeau M, Leclère V, Clément C, Jacquard C, Sanchez L, Barka EA (2018) Paraburkholderia phytofirmans PsJN-plants interaction: from perception to the induced mechanisms. Front Microbiol 9:2093

    Article  PubMed  PubMed Central  Google Scholar 

  • Esquivel-Cervantes LF, Tlapal-Bolaños B, Tovar-Pedraza JM, Pérez-Hernández O, Leyva-Mir SG, Camacho-Tapia M (2022) Efficacy of biorational products for managing diseases of tomato in greenhouse production. Plants (Basel) 11:1638

    Article  CAS  PubMed  Google Scholar 

  • Gamir J, Pastor V, Sánchez-Bel P, Agut B, Mateu D, García-Andrade J, Flors V (2018) Starch degradation, abscisic acid and vesicular trafficking are important elements in callose priming by indole-3-carboxylic acid in response to Plectosphaerella cucumerina infection. Plant J 96:518–531

    Article  CAS  PubMed  Google Scholar 

  • Govrin EM, Rachmilevitch S, Tiwari BS, Solomon M, Levine A (2006) An elicitor from Botrytis cinerea induces the hypersensitive response in Arabidopsis thaliana and other plants and promotes the gray mold disease. Phytopathology 96:299–307

    Article  CAS  PubMed  Google Scholar 

  • Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (s-n-butylhomocysteine sulfoximine). J Biol Chem 254:7558–7560

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Yang P, Zhang DY, Liu YY, Ma LJ, Bu N (2018) Screening, identification and growth-promoting effect of multifunction rhizosphere growth-promoting strain of wild soybean. Biotechnol Bull 34:108–115 (in Chinese)

    Google Scholar 

  • Hao L, Zhao Y, Jin D, Zhang L, Bi XH, Chen HX, Xu Q, Ma CY, Li GZ (2012) Salicylic acid-altering Arabidopsis mutants response to salt stress. Plant Soil 354:81–95

    Article  CAS  Google Scholar 

  • Hashem A, Tabassum B, Fathi Abd Allah E (2019) Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26:1291–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He QQ, Zhao SY, Ma QF, Zhang YY, Huang LL, Li GZ, Hao L (2014) Endogenous salicylic acid levels and signaling positively regulate Arabidopsis response to polyethylene glycol-simulated drought stress. J Plant Grow Regul 33:871–880

    Article  CAS  Google Scholar 

  • Herrera-Téllez VI, Cruz-Olmedo AK, Plasencia J, Gavilanes-Ruíz M, Arce-Cervantes O, Hernández-León S, Saucedo-García M (2019) The protective effect of Trichoderma asperellum on tomato plants against Fusarium oxysporum and Botrytis cinerea diseases involves inhibition of reactive oxygen species production. Int J Mol Sci 20:2007

    Article  PubMed  PubMed Central  Google Scholar 

  • Jauregui I, Pozueta-Romero J, Córdoba J, Avice JC, Aparicio-Tejo PM, Baroja-Fernández E, Aranjuelo I (2018) Unraveling the role of transient starch in the response of Arabidopsis to elevated CO2 under long-day conditions. Environ Exp Bot 155:158–164

    Article  CAS  Google Scholar 

  • Kanwar P, Jha G (2019) Alterations in plant sugar metabolism: signatory of pathogen attack. Planta 249:305–318

    Article  CAS  PubMed  Google Scholar 

  • Kiba A, Nishihara M, Nakatsuka T, Yamamura S (2007) Pathogenesis-related protein 1 homologue is an antifungal protein in Wasabia japonica leaves and confers resistance to Botrytis cinerea in transgenic tobacco. Plant Biotechnol 24:247–253

    Article  CAS  Google Scholar 

  • Li L, Zhang C, Xu D, Schläppi M, Xu ZQ (2012) Expression of recombinant EARLI1, a hybrid proline-rich protein of Arabidopsis, in Escherichia coli and its inhibition effect to the growth of fungal pathogens and Saccharomyces cerevisiae. Gene 506:50–61

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhang H, Tian L, Huang L, Liu S, Li D, Song F (2015) Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress. Front Plant Sci 6:463

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu C, Li LL, Li GZ, Hao L (2020) Ethylene insensitive mutation improves Arabidopsis plant tolerance to NO2 exposure. Ecotoxicol Environ Saf 189:110043

    Article  CAS  PubMed  Google Scholar 

  • Miotto-Vilanova L, Jacquard C, Courteaux B, Wortham L, Michel J, Clément C, Barka EA, Sanchez L (2016) Burkholderia phytofirmans PsJN confers grapevine resistance against Botrytis cinerea via a direct antimicrobial effect combined with a better resource mobilization. Front Plant Sci 7:1236

    Article  PubMed  PubMed Central  Google Scholar 

  • Moghaddam MRB, Van Den Ende W (2012) Sugars and plant innate immunity. J Exp Bot 63:3989–3998

    Article  Google Scholar 

  • Nadarajah KK (2020) ROS Homeostasis in abiotic stress tolerance in plants. Int J Mol Sci 21:5208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niderman T, Genetet I, Bruyère T, Gees R, Stintzi A, Legrand M, Fritig B, Mösinger E (1995) Pathogenesis-related PR-1 proteins are antifungal. Isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiol 108:17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Wang YY, Yin QS, Huang LL, Jiang YG, Li GZ, Hao L (2018) Multiple biological processes involved in the regulation of salicylic acid in Arabidopsis response to NO2 exposure. Environ Exp Bot 149:9–16

    Article  CAS  Google Scholar 

  • Rais A, Jabeen Z, Shair F, Hafeez FY, Hassan MN (2017) Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS One 12:e0187412

    Article  PubMed  PubMed Central  Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav AN, Yadav N, Dhaliwal HS, Saxena AK (2020) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek 113:1075–1107

    Article  CAS  PubMed  Google Scholar 

  • Roca-Couso R, Flores-Félix JD, Rivas R (2021) Mechanisms of action of microbial biocontrol agents against Botrytis cinerea. J Fungi (Basel) 7:1045

    Article  CAS  PubMed  Google Scholar 

  • Sarven MS, Hao Q, Deng J, Yang F, Wang G, Xiao Y, Xiao X (2020) Biological control of tomato gray mold caused by Botrytis cinerea with the entomopathogenic fungus Metarhizium anisopliae. Pathogens 9:213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429

    Article  PubMed  PubMed Central  Google Scholar 

  • Scharte J, Schön H, Tjaden Z, Weis E, von Schaewen A (2009) Isoenzyme replacement of glucose-6-phosphate dehydrogenase in the cytosol improves stress tolerance in plants. Proc Natl Acad Sci U S A 106:8061–8066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalata A, Tal M (1998) The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant 104:167–174

    Article  Google Scholar 

  • Sørhagen K, Laxa M, Peterhänsel C, Reumann S (2013) The emerging role of photorespiration and non-photorespiratory peroxisomal metabolism in pathogen defence. Plant Biol (Stuttg) 15:723–736

    Article  PubMed  Google Scholar 

  • Sriram S, Raguchande T, Vidhyasekaran P, Muthukrishnan S, Samiyappan R (1997) Genetic relatedness with special reference to virulence among the isolates of Rhizoctonia solani causing sheath blight in rice. J Plant Dis Prot 104:260–271

    Google Scholar 

  • Swarbrick PJ, Lefert PS (2006) Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant Cell Environ 29:1061–1076

    Article  CAS  PubMed  Google Scholar 

  • Syed Ab Rahman SF, Singh E, Pieterse CMJ, Schenk PM (2018) Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267:102–111

    Article  CAS  PubMed  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Taler D, Galperin M, Benjamin I, Cohen Y, Kenigsbuch D (2004) Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell 16:172–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Temme N, Tudzynski P (2009) Does Botrytis cinerea ignore H2O2-induced oxidative stress during infection? Characterization of Botrytis activator protein 1. Mol Plant Microbe Interact 22:987–998

    Article  CAS  PubMed  Google Scholar 

  • Toral L, Rodríguez M, Béjar V, Sampedro I (2020) Crop protection against Botrytis cinerea by rhizhosphere biological control agent Bacillus velezensis XT1. Microorganisms 8:992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defence-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Walters DR, Boyle C (2005) Induced resistance and allocation costs: what is the impact of pathogen challenge? Physiol Mol Plant Pathol 66:40–44

    Article  Google Scholar 

  • Wan R, Hou X, Wang X, Qu J, Singer SD, Wang Y, Wang X (2015) Resistance evaluation of Chinese wild Vitis genotypes against Botrytis cinerea and different responses of resistant and susceptible hosts to the infection. Front Plant Sci 6:854

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhou X, Cai Z, Guo L, Chen X, Chen X, Liu J, Feng M, Qiu Y, Zhang Y, Wang A (2020) A biocontrol strain of Pseudomonas aeruginosa CQ-40 promote growth and control Botrytis cinerea in tomato. Pathogens 10:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond B Biol Sci 355:1517–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie YR, Raruang Y, Chen ZY, Brown RL, Cleveland TE (2015) ZmGns, a maize class I β-1,3-glucanase, is induced by biotic stresses and possesses strong antimicrobial activity. J Integr Plant Biol 57:271–283

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZL, Qu WJ (2003) The experimental guide for plant physiology, 3rd edn. Higher Education Press, Beijing, pp 60–160

    Google Scholar 

  • Zhu RM, Cao YT, Li GZ, Guo Y, Ma LJ, Bu N, Hao L (2021) Paraburkholderia sp. GD17 improves rice seedling tolerance to salinity. Plant Soil 467:373–389

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Howe (Michigan State University) for kindly providing the tomato seeds used in this study. This research was supported by the National Natural Science Foundation of China (Grant No. 31572213 to HL).

Author information

Authors and Affiliations

Authors

Contributions

HL and LG designed and carried out the research. GA, ZD, LH and FW contributed to carry out the physiological, biochemical and the qRT-PCR analyses. HL and FW analyzed the data and wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Lin Hao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Anna Maria Pirttila.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 256 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, A., Zhao, D., Liu, H. et al. Paraburkholderia sp. GD17 improves tomato plant growth and resistance to Botrytis cinerea-induced disease. Plant Soil 486, 487–502 (2023). https://doi.org/10.1007/s11104-023-05890-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-05890-2

Keywords

Navigation