Skip to main content
Log in

Exploring the yeast-mycorrhiza-plant interaction: Saccharomyces eubayanus negative effects on arbuscular mycorrhizal formation in tomato plants

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Many studies have reported beneficial effects of yeasts on the colonization and development of arbuscular mycorrhizae, thought a few studies have also shown neutral effects. All these studies have in common that the mechanism, by which yeasts and mycorrhizae interact, is little understood. Here, we explore how plant growth-promoting yeasts affect the colonization of tomato plants by beneficial mycorrhizal fungi.

Methods

We tested the influence of the soil yeasts Candida saitoana, Tausonia pullulans, and Saccharomyces eubayanus on colonization of tomato roots by the mycorrhizal fungus Rhizophagus irregularis. We analyzed mycorrhizal parameters and the expression pattern of mycorrhiza-specific genes. In plants co-inoculated with S. eubayanus and R. irregularis, we measured the root accumulation pattern of jasmonic acid, oxo-phytodienoic acid, abscisic acid and salicylic acid, and the expression of genes related to plant hormone signaling and metabolism.

Results

The three yeasts had distinct effects on mycorrhizal colonization: C. saitoana had no effect on mycorrhizal parameters, T. pullulans delayed mycorrhizal colonization at an early stage, and S. eubayanus slowed colonization down throughout the entire trial. In plants co-inoculated with S. eubayanus and R. irregularis, we observed a sustained increase in jasmonic acid and up-regulation of the JA biosynthesis related genes LOXD, OPR3, and AOS1.

Conclusion

Co-inoculation with yeast affected mycorrhizal colonization and altered the expression pattern of mycorrhizal and plant defense-related genes. In particular, the yeast S. eubayanus modified plant defense hormones such as jasmonic acid, which is linked to mycorrhizal-induced resistance in tomato plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amprayn K-o, Rose MT, Kecskés M, Pereg L, Nguyen HT, Kennedy IR (2012) Plant growth promoting characteristics of soil yeast (Candida tropicalis HY) and its effectiveness for promoting rice growth. Appl Soil Ecol 61:295–299

    Article  Google Scholar 

  • Bedini A, Mercy L, Schneider C, Franken P, Lucic-Mercy E (2018) Unraveling the initial plant hormone signaling, metabolic mechanisms and plant defense triggering the endomycorrhizal symbiosis behavior. Front Plant Sci 9:1800

    Article  PubMed  PubMed Central  Google Scholar 

  • Boby VU, Balakrishna AN, Bagyaraj DJ (2008) Interaction between Glomus mosseae and soil yeasts on growth and nutrition of cowpea. Microbiol Res 163:693–700

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48

    Article  PubMed  Google Scholar 

  • Chabot C, Bécard G, Piché Y (1992) Life cycle of Glomus intraradix in root organ culture. Mycologia 84:315–321

    Article  Google Scholar 

  • Cloete KJ, Valentine AJ, Stander MA, Blomerus LM, Botha A (2009) Evidence of symbiosis between the soil yeast Cryptococcus laurentii and a sclerophyllous medicinal shrub, Agathosma betulina (Berg.) Pillans. Microbial Ecol 57(4):624–632

    Article  Google Scholar 

  • de Mendiburu F (2020) agricolae tutorial (Version 1.3–3)

  • Etemadi M, Gutjahr C, Couzigou J-M, Zouine M, Lauressergues D, Timmers A et al (2014) Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiol 166:281–292

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández Merlos M, López-Ráez JA, Martínez-Medina A, Ferrol N, Azcón C, Bonfante P et al (2014) Defense related phytohormones regulation in arbuscular. J Chem Ecol 40:791–803

    Article  PubMed  Google Scholar 

  • Fiorilli V, Wang JY, Bonfante P, Lanfranco L, Al-Babili S (2019) Apocarotenoids: old and new mediators of the arbuscular mycorrhizal symbiosis. Front Plant Sci 10:1186

    Article  PubMed  PubMed Central  Google Scholar 

  • Flors V, Ton J, van Doorn R, Jakab G, García-Agustín P, Mauch-Mani B (2008) Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J 54:81–92

    Article  CAS  PubMed  Google Scholar 

  • Floss DS, Levy JG, Lévesque-Tremblay V, Pumplin N, Harrison MJ (2013) DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. PNAS USA 110:5025–5034

    Article  Google Scholar 

  • Foo E, Ross JJ, Jones WT, Reid JB (2013) Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann Bot 111:769–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fracchia S, Godeas A, Scervino JM, Sampedro I, Ocampo JA, Garcıa-Romera I (2003) Interaction between the soil yeast Rhodotorula mucilaginosa and the arbuscular mycorrhizal fungi Glomus mosseae and Gigaspora rosea. Soil Biol Biochem 35:701–707

    Article  CAS  Google Scholar 

  • Giraudoux P, Giraudoux MP, MASS S (2018). Package ‘pgirmess’

  • Gollner MJ, Püschel D, Rydlová J, Vosátka M (2006) Effect of inoculation with soil yeasts on mycorrhizal symbiosis of maize. Pedobiologia 50:341–345

    Article  Google Scholar 

  • Hause B, Schaarschmidt S (2009) The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochemistry 70:1589–1599

    Article  CAS  PubMed  Google Scholar 

  • Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110

    Article  CAS  PubMed  Google Scholar 

  • Herrera Medina MJ, Gagnon H, Piché Y, Ocampo JA, García-Garrido JM, Vierheilig H (2003) Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci 164:993–998

    Article  CAS  Google Scholar 

  • Herrera-Medina MJ, Steinkellner S, Vierheilig H, Ocampo Bote JA, García-Garrido JM (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175:554–564

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Medina MJ, Tamayo M, Vierheilig H, Ocampo JA, García-Garrido JM (2008) The jasmonic acid signalling pathway restricts the development and functionality in the tomato arbuscular mycorrhiza. J Plant Growth Regul 175:554–564

    Google Scholar 

  • Hewitt EJ (1966) Sand water culture methods used in the study of plant nutrition. Commonwealth Agricult Bureau, Technical communication N∘ 22

  • Ho-Plágaro T, Morcillo RJL, Tamayo-Navarrete MI, Huertas R, Molinero-Rosales N, López-Ráez JA et al (2021) DLK2 regulates arbuscule hyphal branching during arbuscularmycorrhizal simbiosis. New Phytol 229:548–562

    Article  PubMed  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-Induced Resistance and Priming of Plant Defenses. J Chem Ecol 38:651–664

    Article  CAS  PubMed  Google Scholar 

  • Koo AJK, Gao X, Jones AD, Howe GA (2009) A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J 59:974–986

    Article  CAS  PubMed  Google Scholar 

  • Lanfranco L, Fiorilli V, Venice F, Bonfante P (2018) Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. J Exp Bot 69:2175–2188

    Article  CAS  PubMed  Google Scholar 

  • León Morcillo R, Martín Rodríguez JA, Vierheilig H, Ocampo JA, García Garrido JM (2012) Late activation of the 9-oxylipin pathway during Arbuscular Mycorrhiza formation in tomato and its regulation by jasmonate signalling. J Exp Bot 63:3545–3558

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao D, Wang S, Cui M, Liu J, Chen A, Xu G (2018) Phytohormones regulate the development of arbuscular mycorrhizal symbiosis. Int J Mol Sci 19:3146

    Article  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • López-Ráez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ et al (2010) Does abscisic acid affect strigolactone biosynthesis? New Phytol 187:343–354

    Article  PubMed  Google Scholar 

  • Martinez-Medina A, Fernandez I, Lok GB, Pozo MJ, Pieterse CMJ, Van Wees SCM (2017) Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytol 213:1363–1377

    Article  CAS  PubMed  Google Scholar 

  • Martín-Rodríguez J, León-Morcillo R, Vierheilig H, Ocampo JA, Ludwig-Müller J, García-Garrido JM (2011) Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytol 190:193–205

    Article  PubMed  Google Scholar 

  • Martín-Rodríguez JA, Huertas R, Ho-Plágaro T, Ocampo JA, Turecková V, Tarkowská D et al (2016) Gibberellin-abscisic acid balances during arbuscular mycorrhiza formation in tomato. Front Plant Sci 7:1273

    Article  PubMed  PubMed Central  Google Scholar 

  • Mestre MC, Rosa CA, Safar SVB, Libkind D, Fontenla SB (2011) Yeast communities associated with the bulk-soil, rhizosphere and ectomycorrhizosphere of a Nothofagus pumilio forest in northwestern Patagonia, Argentina. FEMS Microbiol Ecol 78:31–541

    Google Scholar 

  • Mestre MC, Fontenla S, Rosa CA (2014) Ecology of cultivable yeasts in pristine forests in northern Patagonia (Argentina) influenced by different environmental factors. Can J Microbiol 60:371–382

    Article  CAS  PubMed  Google Scholar 

  • Mestre MC, Fontenla S, Bruzone MC, Fernández NV, Dames J (2016) Detection of plant growth enhancing features in psychrotolerant yeasts from Patagonia (Argentina). J Basic Microbiol 56:1098–1106

    Article  CAS  PubMed  Google Scholar 

  • Mestre MC, Pastorino MJ, Aparicio AG, Fontenla SB (2017) Natives helping foreigners?: The effect of inoculation of poplar with patagonian beneficial microorganisms. J Soil Sci Plant Nutr 17:1028–1039

    Article  CAS  Google Scholar 

  • Mestre MC, Severino ME, Fontenla S (2021) Evaluation and selection of culture media for the detection of auxin-like compounds and phosphate solubilization on soil yeasts. Rev Arg Microbiol 53(1):78–83

    Google Scholar 

  • Mohamed HM (2015) Effect of Arbuscular Mycorrhizal Fungus (Glomus Mosseae) and Soil Yeasts Interaction on Root Nodulation, N-Fixation and Growth of Faba Bean (Vichia faba). Malaysian J Soil Sci 19:157–168

    Google Scholar 

  • Nassar A, El-Tarabily K, Sivasithamparam K (2005) Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol Fertil Soils 42:97–108

    Article  CAS  Google Scholar 

  • Nutaratat P, Srisuk N, Arunrattiyakorn P, Limtong S (2014) Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol 118:683–694

    Article  CAS  PubMed  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. T Brit Mycol Society 55:158–161

    Article  Google Scholar 

  • Pozo MJ, López-Ráez JA, Azcón-Aguilar C, García-Garrido JM (2015) Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol 205:1431–1436

    Article  CAS  PubMed  Google Scholar 

  • Rich MK, Courty PE, Roux C, Reinhardt D (2017) Role of the GRAS transcription factor ATA/RAM1 in the transcriptional reprogramming of arbuscular mycorrhiza in Petunia hybrida. BMC Genomics 18:589

    Article  PubMed  PubMed Central  Google Scholar 

  • Sampedro I, Aranda E, Scervino JM, Fracchia S, Garcia-Romera I, Ocampo JA, Godeas A (2004) Improvement by soil yeasts of arbuscular mycorrhizal symbiosis of soybean (Glycine max) colonized by Glomus mosseae. Mycorrhiza 14:229–234

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Romera B, Calvo-Polanco M, Ruiz-Lozano JM, Zamarreño ÁM, Arbona V, García-Mina JM, Gómez-Cadenas A, Aroca R (2018) Involvement of the def-1 mutation in the response of tomato plants to arbuscular mycorrhizal symbiosis under well-watered and drought conditions. Plant Cell Physiol 59:248–261

    Article  PubMed  Google Scholar 

  • Sarabia M, Cornejo P, Azcón R, Carreón-Abud Y, Larsen J (2017) Mineral phosphorus fertilization modulates interactions between maize, rhizosphere yeasts and arbuscular mycorrhizal fungi. Rhizosphere 4:89–93

    Article  Google Scholar 

  • Singh CS, Kapoor A, Wange SS (1991) The enhancement of root colonisation of legumes by vesicular-arbuscular mycorrhizal (VAM) fungi through the inoculation of the legume seed with commercial yeast (Saccharomyces cerevisiae). Plant Soil 131:129–133

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic press, London

    Google Scholar 

  • Thaler JS, Fidantsef AL, Bostock RM (2002) Antagonism between Jasmonate- and Salicylate-mediates induced plant resistance: effect of concentration and timing of elicitation on defence-related proteins, herbivore, and pathogen performance in tomato. J Chem Ecol 28:1131–1159

    Article  CAS  PubMed  Google Scholar 

  • Torres-Vera RM, García J, Lopez-Raez Pozo MJ., JA, (2016) Expression of molecular markers associated to defense signalling pathways and strigolactone biosynthesis during the early interaction tomato-Phelipanche ramose. Physiol Mol Plant Pathol 94:100e107101

    Article  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorrhization VA d’un système radiculaire. Recherche de methods d’estimation ayant une signification fonctionelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 217–221

    Google Scholar 

  • Wickham H (2016) Programming with ggplot2. In ggplot2. Springer, Cham, pp. 241–253

  • Xin G, Glawe D, Doty SL (2009) Characterization of three endophytic, indole-3-acetic acid-producing yeasts occurring in Populus trees. Mycol Res 113:973–980

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

LCMS analyses were carried out by Dr. Lourdes Sánchez-Moreno at the Scientific Instrumentation Service of the Estación Experimental del Zaidín (CSIC), Granada, Spain. This work was supported by Fondo para la Investigación Científica y Tecnológica (FONCYT) projects PICT2018-3441, Argentina. M.C.M. work at Estación Experimental del Zaidín (EEZ) was supported by a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) partial fellowship for Assistant Researchers.

Funding

This work was supported by Fondo para la Investigación Científica y Tecnológica (FONCYT) projects PICT2018-3441, Argentina. M.C.M. work at Estación Experimental del Zaidín (EEZ) was supported by a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) partial fellowship for Assistant Researchers.

Author information

Authors and Affiliations

Authors

Contributions

MCMestre and JMGarcía-Garrido contributed to the study conception and design. Material preparation and data collection was performed by MCMestre and MI Tamayo Navarrete; data analysis was performed by MCMestre and JM García-Garrido. The first draft of the manuscript was written by MCMestre and all authors commented on previous version of the manuscript. All author read and approved the final manuscript.

Corresponding author

Correspondence to M. Cecilia Mestre.

Ethics declarations

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Responsible Editor: Felipe E. Albornoz.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 91 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mestre, M.C., Tamayo Navarrete, M.I. & García Garrido, J.M. Exploring the yeast-mycorrhiza-plant interaction: Saccharomyces eubayanus negative effects on arbuscular mycorrhizal formation in tomato plants. Plant Soil 479, 529–542 (2022). https://doi.org/10.1007/s11104-022-05538-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05538-7

Keywords

Navigation