Skip to main content

Advertisement

Log in

Quantifying country-to-global scale nitrogen fixation for grain legumes II. Coefficients, templates and estimates for soybean, groundnut and pulses

  • Marschner Review
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

The demand for estimates of biological nitrogen (N) fixation inputs in agricultural systems is driven by the need to effectively manage the global N cycle.

Scope

We present a methodology for quantifying N2 fixation by the grain legume-rhizobia symbioses that can be used for any year or sequence of years for which area and production statistics for legume oilseed and pulse crops were available and at country-to-global scales. The coefficients used in the templates – harvest index, N harvest index, %N shoots, %N grain and a factor to account for below-ground N – were aggregated from 224 reports containing > 4,000 observations. Values for the % total crop N derived from atmospheric N2 (%Ndfa) for specific grain legumes and regions were determined in a companion paper. The grain legumes were estimated to fix a global total of 35.5 Tg N in the year 2018 - 25.0 Tg for soybean (Glycine max), 7.2 Tg for the pulses and 3.3 Tg for groundnut (Arachis hypogaea). Soybean dominated global grain legume N2 fixation, with 38 % of total N fixed associated with soybean in South and Central America and a further 22 % by soybean in North America.

Conclusions

The updated estimates of N2 fixation by the grain legumes inform us of a substantial and increasing role that biological N2 fixation plays in global agricultural systems. The challenge remains to reliably estimate N inputs from other N2-fixing organisms that are active in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Anglade J, Billen G, Garnier J (2015) Relationships for estimating N2 fixation in legumes: incidence for N balance of legume-based cropping systems in Europe. Ecosphere 6(3):1–24. https://doi.org/10.1890/ES14-00353.1

    Article  Google Scholar 

  • Angus JF, Grace PR (2017) Nitrogen balance in Australia and nitrogen use efficiency on Australian farms. Soil Res 55:435–450. https://doi.org/10.1071/SR16325

    Article  Google Scholar 

  • Angus JF, Peoples MB (2012) Nitrogen from Australian dryland pastures. Crop Pasture Sci 63:746–758. https://doi.org/10.1071/CP12161

    Article  Google Scholar 

  • Arcand MM, Knight JD, Farrell RE (2013) Estimating belowground nitrogen inputs of pea and canola and their contribution to soil inorganic N pools using 15N labeling. Plant Soil 371:67–80

    Article  CAS  Google Scholar 

  • Arcand MM, Lemke R, Farrell RE, Knight JD (2014) Nitrogen supply from below ground residues of lentil and wheat to a subsequent wheat crop. Biol Fertil Soils 50:507–515

    Article  CAS  Google Scholar 

  • Baddeley JA, Jones S, Topp CFE, Watson CA, Helming J, Stoddard L (2013) Integrated analysis of biological nitrogen fixation (BNF) in Europe. Legume Futures Report 1.5. Available from https://www.legumefutures.eu

  • Balboa GR, Sadras VO, Ciampitti IA (2018) Shifts in soybean yield, nutrient uptake, and nutrient stoichiometry: a historical synthesis-analysis. Crop Sci 58:43–54. https://doi.org/10.2135/cropsci2017.06.0349

    Article  CAS  Google Scholar 

  • Barbosa JZ, Hungria M, da Silva Sena JV, Poggere G, dos Reis AR, Corrêa RS (2021) Meta-analysis reveals benefits of co-inoculation of soybean with Azospirillum brasilense and Bradyrhizobium spp. in Brazil. Appl Soil Ecol 163:103913

    Article  Google Scholar 

  • Basigalup D, del Carmen Spada M, Odorizzi A, Arolfo V (2018) Global interaction for alfalfa innovation. Proceedings of the Second World Alfalfa Conference, Cordoba, Argentina. Available from http://www.worldalfalfacongress.org/resumenes.pdf

  • Bei QC, Liu G, Tang HY, Cadisch G, Rasche F, Xie ZB (2013) Heterotrophic and phototrophic 15N2 fixation and distribution of fixed 15 N in a flooded rice soil system. Soil Biol Biochem 59:25–31

    Article  CAS  Google Scholar 

  • Bender RR, Haegele JW, Below FE (2015) Nutrient uptake, partitioning, and remobilization in modern soybean varieties. Agron J 107(2):563–573

    Article  CAS  Google Scholar 

  • Billen G, Lassaletta L, Garnier J (2014) A biogeochemical view of the global agro-food system: nitrogen flows associated with protein production, consumption and trade. Glob Food Sec 3:209–219. https://doi.org/10.1016/j.gfs.2014.08.003

    Article  Google Scholar 

  • Boddey RM, Macedo R, Tarré RM, Ferreira E, Oliveira OC, Rezende CP, Cantarutti RB, Pereira JM, Alves BJR, Urquiaga S (2004) Nitrogen cycling in Brachiaria pastures: the key to understanding the process of pasture decline. Agr Ecosyst Environ 103:389–403

    Article  CAS  Google Scholar 

  • Borst HL, Thatcher LE (1931) Life history and composition of the soybean plant. Ohio Agric Exp Stn Bull 494:51–96

    Google Scholar 

  • Bouwman AF, Beusen AH, Lassaletta L, van Apeldoorn DF, van Grinsven HJ, Zhang J, van Ittersum MK (2017) Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci Rep 7(1):40366. https://doi.org/10.1038/srep40366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlsson G, Huss-Danell K (2003) Nitrogen fixation in perennial forage legumes in the field. Plant Soil 253:353–372

    Article  CAS  Google Scholar 

  • Chalk PM (2016) The strategic role of 15 N in quantifying the contribution of endophytic N2 fixation to the N nutrition of non-legumes. Symbiosis 69:63–80

    Article  CAS  Google Scholar 

  • Chalk PM (2020) Whither the enigma of soil nitrogen balance sheets? Plant Soil 456:455–460

    Article  CAS  Google Scholar 

  • Chalk PM, Peoples MB, McNeill AM, Boddey RM, Unkovich MJ, Gardener MJ, Silva CF, Chen DL (2014) Methodologies for estimating nitrogen transfer between legumes and companion species in agro-ecosystems: a review of 15 N-enriched techniques. Soil Biol Biochem 73:10–21

    Article  CAS  Google Scholar 

  • Divito GA, Echeverría HE, Andrade FH, Sadras VO (2016) Soybean shows an attenuated nitrogen dilution curve irrespective of maturity group and sowing date. Field Crop Res 186:1–9

    Article  Google Scholar 

  • Donahue JM, Bai H, Almtarfi H, Zakeri H, Fritschi FB (2020) The quantity of nitrogen derived from symbiotic N fixation but not the relative contribution of N fixation to total N uptake increased with breeding for greater soybean yields. Field Crop Res 259:107945

    Article  Google Scholar 

  • Fageria NK, Santos AB (2008) Yield physiology of dry bean. J Plant Nutr 31:983–1004

    Article  CAS  Google Scholar 

  • FAOSTAT (2021a) http://www.fao.org/faostat/en/#data/QC. Accessed Mar 2021

  • FAOSTAT (2021b) http://www.fao.org/faostat/en/#data/RFN. Accessed Mar 2021

  • FAOSTAT (2021c) http://www.fao.org/faostat/en/#data/RL. Accessed Apr 2021

  • Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bouwman AF, Butterbach-Bahl K, Dentener F, Stevenson D, Amann M, Voss M (2013) The global nitrogen cycle in the twenty-first century. Philos Trans R Soc B 368:20130164. https://doi.org/10.1098/rstb.2013.0164

    Article  CAS  Google Scholar 

  • Fustec J, Lesuffleur F, Mahieu S, Cliquet J-B (2010) Nitrogen rhizodeposition of legumes. A review. Agron Sustain Dev 30:57–66

    Article  CAS  Google Scholar 

  • Gan YB, Stulen I, Posthumus F, van Keulen H, Kuiper PJC (2002) Effects of N management on growth, N2 fixation and yield of soybean. Nutr Cycl Agroecosyst 62:163–174

    Article  CAS  Google Scholar 

  • Gardner M, Peoples M, Condon J, Li G, Conyers M, Dear B (2012) Evaluating the importance of a potential source of error when applying shoot 15N labeling techniques to legumes to quantify the below-ground transfer of nitrogen to other species. In: Proceedings of the 16th Australian Agronomy Conference, Armidale, NSW, Australia. https://researchoutput.csu.edu.au/ws/portalfiles/portal/9719030/40605manuscipt.pdf

  • Gaspar AP, Laboski CAM, Naeve SL, Conley SP (2017) Dry matter and nitrogen uptake, partitioning, and removal across wide range of soybean seed yield levels. Crop Sci 57:2170–2182

    Article  CAS  Google Scholar 

  • Gasser M, Hammelehle A, Oberson A, Frossard E, Mayer J (2015) Quantitative evidence of overestimated rhizodeposition using 15 N leaf-labelling. Soil Biol Biochem 85:10–20

    Article  CAS  Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems, 2nd edn. CAB International, Wallingford, p 423

    Book  Google Scholar 

  • Giller KE, Franke AC, Abaidoo R, Baijukya F, Bala A, Boahen S, Dashiell K, Kantengwa S, Sanginga J-M, Sanginga N, Simmons AJ, Turner A, de Wolf J, Woomer P, Vanlauwe B (2013) N2Africa: Putting nitrogen fixation to work for smallholder farmers in Africa. In: Vanlauwe B, van Asten PJA, Blomme G (eds) Agro-ecological intensification of agricultural systems in the African highlands. Routledge, London, pp 156–174

    Google Scholar 

  • Greenwood DJ, Lemaire G, Gosse G, Cruz P, Draycott A, Neeteson JJ (1990) Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann Bot 66:425–436

    Article  CAS  Google Scholar 

  • Hammond LC, Black CA, Norman AG (1951) Nutrient uptake by soybeans on two Iowa soils. Ohio Agric Exp Stn Bull 384:463–512

    Google Scholar 

  • Hanway JJ, Weber CR (1971) Dry matter accumulation in soybean (Glycine max (L.) Merrill) plants as influenced by N, P, and K fertilization. Agron J 63,:63–266. https://doi.org/10.2134/agronj1971.00021962006300020020x

    Article  Google Scholar 

  • Hanway JJ, Weber CR (1971) Accumulation of N, P, and K by soybean (Glycine max (L.) Merrill) Plants. Agron J 63:406–408

    Article  CAS  Google Scholar 

  • Heffer P, Prud’homme M (2016) Global nitrogen fertiliser demand and supply: trend, current level and outlook. Proceedings of the 2016 International Nitrogen Initiative Conference. Solutions to improve nitrogen use efficiency for the world. 4–8 December 2016, Melbourne, Australia. https://www.ini2016.com

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological N2 fixation in agricultural systems. Plant Soil 311:1–18. https://doi.org/10.1007/s11104-008-9668-3

    Article  CAS  Google Scholar 

  • Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425. https://doi.org/10.1007/s11104-009-0262-0

    Article  CAS  Google Scholar 

  • Hupe A, Schulz H, Bruns C, Joergensen RG, Wichern F (2016) Digging in the dirt – inadequacy of belowground plant biomass quantification. Soil Biol Biochem 96:137–144

    Article  CAS  Google Scholar 

  • IFASTAT (2021) International Fertilizer Association statistics. https://www.ifastat.org/. Accessed Mar 2021

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 65:197–209

    Article  Google Scholar 

  • Janzen HH, Bruinsma Y (1989) Methodology for the quantification of root and rhizosphere nitrogen dynamics by exposure of shoots to 15 N-labelled ammonia. Soil Biol Biochem 21:189–196

    Article  CAS  Google Scholar 

  • Jensen ES (1996) Rhizodeposition of N by pea and barley and its effect on soil N dynamics. Soil Biol Biochem 28:65–71

    Article  CAS  Google Scholar 

  • Jensen ES, Carlsson G, Hauggaard-Nielsen H (2020) Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: a global-scale analysis. Agron Sustain Dev 40 (5). https://doi.org/10.1007/s13593-020-0607-x

  • Jing MA, Bei QC, Wang XJ, Liu G, Cadisch G, Lin XW, Zhu JG, Sun XO, Xie ZB (2019) Paddy system with a hybrid rice enhances Cyanobacteria Nostoc and increases N2 fixation. Pedosphere 29(3):374–387

    Article  Google Scholar 

  • Karimi R, Pogue SJ, Kröbel R, Beauchemin KA, Schwinghamer T, Janzen HH (2020) An updated nitrogen budget for Canadian agroecosystems. Agr Ecosyst Environ 304. https://doi.org/10.1016/j.agee.2020.107046

  • Khan DF, Peoples MB, Chalk PM, Herridge DF (2002) Quantifying below-ground nitrogen of legumes 2. A comparison of 15 N and non isotopic methods. Plant Soil 239:277–289

    Article  CAS  Google Scholar 

  • Khan WDF, Peoples MB, Schwenke GD, Felton WL, Chen D, Herridge D (2003) Effects of below ground nitrogen on N balances of field-grown fababean, chickpea, and barley. Aust J Agric Res 54:333–340

    Article  Google Scholar 

  • Laberge G, Frank AC, Ambus P, Høgh-Jensen H (2009) Nitrogen rhizodeposition from soybean (Glycine max) and its impact on nutrient budgets in two contrasting environments of the Guinean savannah zone of Nigeria. Nutr Cycl Agroecosyst 84:49–58

    Article  Google Scholar 

  • Ladha JK, Tirol-Padre A, Reddy CK, Cassman KG, Verma S, Powlson DS, van Kessel C, Richter DdeB, Chakraborty D, Pathak H (2016) Global nitrogen budgets in cereals: a 50-year assessment for maize, rice, and wheat production systems. Sci Rep 6:19355. https://doi.org/10.1038/srep19355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassaletta L, Billen G, Grizzetti B, Anglade J, Garnier J (2014) 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ Res Lett 9:105011

    Article  Google Scholar 

  • Lassaletta L, Billen G, Grizzetti B, Garnier J, Leach AM, Galloway JN (2014) Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry 118(1–3):225–241. https://doi.org/10.1007/s10533-013-9923-4

    Article  Google Scholar 

  • Lassaletta L, Billen G, Garnier J, Bouwman L, Velazquez E, Mueller ND, Gerber JS (2016) Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ Res Lett 11:095007

    Article  Google Scholar 

  • Lemaire G, Jeuffroy M-H, Gastal F (2008) Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. Eur J Agron 28:614–624

    Article  CAS  Google Scholar 

  • Liu J, Junguo Liu, You L, Amini M, Obersteiner M, Herrero M, Zehnder AJB, Yang H (2010) A high-resolution assessment on global nitrogen flows in cropland. Proc Natl Acad Sci 107(17):8035–8040. https://doi.org/10.1073/pnas.0913658107

  • López-Bellido L, Benítez-Vega J, García P, Redondo R, López-Bellido RJ (2011) Tillage system effect on nitrogen rhizodeposited by faba bean and chickpea. Field Crop Res 120:189–195

    Article  Google Scholar 

  • Mahieu S (2009) Assessment of the below ground contribution of field grown pea (Pisum sativum L.) to the soil N pool. Dissertation. Ecole Superieure d’Agriculture d’Angers, Angers

  • Mahieu S, Fustec J, Faure M-L, Corre-Hellou G, Crozat Y (2007) Comparison of two 15 N labelling methods for assessing nitrogen rhizodeposition of pea. Plant Soil 295:193–205

    Article  CAS  Google Scholar 

  • Mahieu S, Fustec J, Jensen ES, Crozat Y (2009) Does labelling frequency affect N rhizodeposition assessment using the cotton-wick method? Soil Biol Biochem 41:2236–2243

    Article  CAS  Google Scholar 

  • Mayer J, Buegger F, Jensen ES, Schloter M, Heß J (2003) Estimating N rhizodeposition of grain legumes using a 15 N in situ stem labelling method. Soil Biol Biochem 35:21–28

    Article  CAS  Google Scholar 

  • McNeill AM, Fillery IRP (2008) Field measurement of lupin belowground nitrogen accumulation and recovery in the subsequent cereal-soil system in a semi-arid Mediterranean-type climate. Plant Soil 302:297–316

    Article  CAS  Google Scholar 

  • Mogollon JM, Lassaletta L, Beusen AHW, van Grinsven HJM, Westhoek H, Bouwman AF (2018) Assessing future reactive nitrogen inputs into global croplands based on the shared socioeconomic pathways. Environ Res Lett 13:044008. https://doi.org/10.1088/1748-9326/aab212

    Article  Google Scholar 

  • Ney B, Dore T, Sagan M (1997) Grain Legumes. In: Lemaire G (ed) Diagnosis of the nitrogen status in crops. Springer, Berlin. https://doi.org/10.1007/978-3-642-60684-7_6

    Chapter  Google Scholar 

  • Pate JS, Farquhar GD (1988) Role of the crop plant in cycling of nitrogen. In: Wilson JR (ed) ‘Advances in nitrogen cycling in agricultural ecosystems. CAB International, Wales, pp 23–45

    Google Scholar 

  • Peoples MB, Giller KE, Jensen ES, Herridge DF (2021) Quantifying country-to-global scale nitrogen fixation for grain legumes: I. Reliance on nitrogen fixation of soybean, groundnut and pulses. Plant Soil 469:1–14. https://doi.org/10.1007/s11104-021-05167-6

  • Phelan P, Moloney AP, McGeough EJ, Humphreys J, Bertilsson J, O’Riordan EG, O’Kiely P (2015) Forage legumes for grazing and conserving in ruminant production systems. Crit Rev Plant Sci 34:281–326. https://doi.org/10.1080/07352689.2014.898455

    Article  Google Scholar 

  • Poth M, La Favre JS, Focht DD (1986) Quantification by direct 15 N dilution of fixed N2 incorporation in to soil by Cajanus cajan (pigeon pea). Soil Biol Biochem 18:125–127

    Article  CAS  Google Scholar 

  • Rasmussen J, Gylfadóttirc T, Dhalama NR, De Notaris C (2019) Temporal fate of 15 N and 14 C leaf-fed to red and white clover in pure stand or mixture with grass – Implications for estimation of legume derived N in soil and companion species. Soil Biol Biochem 133:60–71

    Article  CAS  Google Scholar 

  • Rausch LL, Gibbs HK, Schelly I, Brandão A, Morton DC, Filho AC, Strassburg B, Walker N, Noojipady P, Barreto P, Meyer D (2019) Soy expansion in Brazil’s Cerrado. Conserv Lett 12:e12671

    Article  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst 42:489–512

    Article  Google Scholar 

  • Rochester IJ, Peoples MB, Constable GA, Gault RR (1998) Faba beans and other legumes add nitrogen to irrigated cotton cropping systems. Aust J Exp Agric 38:253–260

    Article  Google Scholar 

  • Roger P, Ladha JK (1992) Biological nitrogen fixation in wetland rice fields: estimation and contributions to N balance. Plant Soil 141:41–55

    Article  CAS  Google Scholar 

  • Russell CA, Fillery IRP (1996) In situ 15 N labelling of lupin below-ground biomass. Aust J Agric Res 47:1035–1046

    Article  CAS  Google Scholar 

  • Russell CA, Fillery IRP (1996) Estimates of lupin belowground biomass nitrogen, dry matter, and nitrogen turnover to wheat. Aust J Agric Res 47:1047–1059

    Article  CAS  Google Scholar 

  • Santachiara G, Salvagiotti F, Gerde JA, Rotundo JL (2018) Does biological nitrogen fixation modify soybean nitrogen dilution curves? Field Crop Res 223:171–178

    Article  Google Scholar 

  • Santos MS, Nogueira MA, Hungria M (2019) Microbial inoculants: reviewing the past and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express 9:205. https://doi.org/10.1186/s13568-019-0932-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos MS, Nogueira MA, Hungria M (2021) Outstanding impact of Azospirillum brasilense strains Ab-V5 and Ab-V6 on the Brazilian agriculture: Lessons that farmers are receptive to adopt new microbial inoculants. Rev Bras Cienc Solo 45:e0200128. https://doi.org/10.36783/18069657rbcs20200128

    Article  Google Scholar 

  • Saxena NP, Sheldrake AR (1980) Physiology of growth, development, and yield of chickpeas in India. Accessed at https://www.researchgate.net/publication/286389111_Physiology_of_growth_development_and_yield_of_chickpeas_in_India

  • Schapaugh WT, Wilcox JR (1980) Relationships between harvest indices and other plant characteristics in soybeans. Crop Sci 20:529–533

    Article  Google Scholar 

  • Smil V (1999) Nitrogen in crop production: an account of global flows. Global Biogeochem Cycles 13:647–662

    Article  CAS  Google Scholar 

  • Song X-P, Hansen MC, Potapov P, Adusei B, Pickering J, Adami M, Lima A, Zalles V, Stehman SV, Di Bella CM, Conde MC, Copati EJ, Fernandes LB, Hernandez-Serna A, Jantz SM, Pickens AH, Turubanova S, Tyukavina A (2021) Massive soybean expansion in South America since 2000 and implications for conservation. Nat Sustain. https://doi.org/10.1038/s41893-021-00729-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Soper FM, Taylor BN, Winbourne JB, Wong MY, Dynarski KA, Reis CRG, Peoples MB, Cleveland CC, Reed SC, Menge DNL, Perakis SS (2021) A roadmap for sampling and scaling biological nitrogen fixation in terrestrial ecosystems. Methods Ecol Evol 00:1–16. https://doi.org/10.1111/2041-210X.13586

    Article  Google Scholar 

  • Sullivan BW, Smith WK, Townsend AR, Nasto MK, Reed SC, Chazdon RL, Cleveland CC (2014) Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle. Proc Natl Acad Sci 111:8101–8106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unkovich M, Baldock J (2008) Measurement of asymbiotic N2 fixation in Australian agriculture. Soil Biol Biochem 40:2915–2921

    Article  CAS  Google Scholar 

  • Unkovich M, Baldock J, Forbes M (2010) Variability in harvest index of grain crops and potential significance for carbon accounting: examples from Australian agriculture. Adv Agron 105:173–219

    Article  Google Scholar 

  • Unkovich M, Herridge D, James EK, Giller K, Peoples MB (2020) Reliable quantification of N2 fixation by non-legumes remains problematic. Nutr Cycl Agroecosyst 118:223–225. https://doi.org/10.1007/s10705-020-10083-9

    Article  Google Scholar 

  • Urquiaga S, Jantalia CP, Zotarelli L, Araujo ES, Alves BJR, Boddey RM, Cabezas WL, Dos Santos HP, Torres E (2006) Nitrogen dynamics in soybean-based crop rotations under conventional and zero tillage in Brazil. Management practices for improving sustainable crop production in tropical acid soils. International Atomic Energy Agency, Vienna, pp 13–46. https://www-pub.iaea.org/MTCD/publications/PDF/Pub1285_web.pdf

  • Vanlauwe B, Hungria M, Kanampiu F, Giller KE (2019) The role of legumes in the sustainable intensification of African smallholder agriculture: Lessons learnt and challenges for the future. Agric Ecosyst Environ 284:106583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voisin A, Salon C, Munier-Jolain NG, Ney B (2002) Effect of mineral nitrogen on nitrogen nutrition and biomass partitioning between the shoot and roots of pea (Pisum sativum L.). Plant Soil 242:251–262

    Article  CAS  Google Scholar 

  • Wichern F, Mayer J, Joergensen RG, Muller T (2007) Rhizodeposition of C and N in peas and oats after 13 C–15 N double labelling under field conditions. Soil Biol Biochem 39:2527–2537

    Article  CAS  Google Scholar 

  • Wichern F, Mayer J, Joergensen RG, Muller T (2007) Release of C and N from roots of peas and oats and their availability to soil microorganisms. Soil Biol Biochem 39:2829–2839

    Article  CAS  Google Scholar 

  • Wichern F, Eberhardt E, Mayer J, Joergensen RG, Muller T (2008) Nitrogen rhizodeposition in agricultural crops: methods, estimates and future prospects. Soil Biol Biochem 40:30–48

    Article  CAS  Google Scholar 

  • Yang JY, Drury CF, Yang CF, De Jong XM, Huffman R, Campbell EC, Kirkwood CA (2010) Estimating biological N2 fixation in Canadian agricultural land using legume yields. Agr Ecosyst Environ 137:192–201

    Article  CAS  Google Scholar 

  • Yasmin K, McNeill AM (2002) Influence of water stress on the soil nitrogen balance at harvest following chickpea and grasspea. In 13th Australian Nitrogen Fixation Conference Abstracts. Aust. Soc for Nitrogen Fixation. Adelaide

  • Yasmin K, Cadisch G, Baggs EM (2010) The significance of belowground fractions when considering N and C partitioning within chickpea (Cicer arietinum L.). Plant Soil 327:247–259

    Article  CAS  Google Scholar 

  • Zang HD, Yang XC, Feng XM, Qian X, Hu YG, Ren CZ, Zeng Z (2015) Rhizodeposition of nitrogen and carbon by mungbean (Vigna radiata L.) and its contribution to intercropped oats (Avena nuda L.). PLoS ONE 10:e0121132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zang H, Xian Q, Wene, Hu Y, Ren C, Zeng Z, Guo L, Wang C (2018) Contrasting carbon and nitrogen rhizodeposition patterns of soya bean (Glycine max L.) and oat (Avena nuda L.). Eur J Soil Sci. https://doi.org/10.1111/ejss.12556

    Article  Google Scholar 

  • Zebarth BJ, Alder V, Sheard RW (1991) In situ labelling of legume residues with a foliar application of an N-15 enriched urea solution. Commun Soil Sci Plant Anal 22:437–447

    Article  CAS  Google Scholar 

  • Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y (2015) Managing nitrogen for sustainable development. Nature doi. https://doi.org/10.1038/nature15743

    Article  Google Scholar 

  • Zhang K, Zhao J, Wang X, Xu H, Zang H, Liu J, HU Y, Zeng Z (2019) Estimates on nitrogen uptake in the subsequent wheat by aboveground and root residue and rhizodeposition of using peanut labelled with 15N isotope on the North China Plain. J Integr Agric 18(3):571–579

    Article  CAS  Google Scholar 

  • Zhang X, Davidson EA, Zou T, Lassaletta L, Quan Z, Li T, Zhang W (2020) Quantifying nutrient budgets for sustainable nutrient management. Global Biogeochem Cycles 34:e2018GB006060. https://doi.org/10.1029/2018GB006060

Download references

Acknowledgements

We thank Dr Euan James, The James Hutton Institute, Scotland, and Dr Bob Boddey, EMBRAPA, Brazil, for valuable discussion and comments during the course of manuscript preparation. We also gratefully acknowledge the valuable feedback on the manuscript by Dr Murray Unkovich, University of Adelaide, Australia.

Funding

Financial support for a 4-week study visit for MBP from Wageningen University & Research (WUR) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

The large dataset was generated by DFH and MBP and analysed by DFH. The manuscript was drafted by DFH. During a 2-year period leading to submission, all authors contributed to regular, extensive discussions about the review and provided critical insights into various aspects of biological N2 fixation. All authors contributed to and approved the final manuscript.

Corresponding author

Correspondence to David F. Herridge.

Ethics declarations

Conflict of interest

None.

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors have agreed on submission of this manuscript to Plant and Soil for publication.

Additional information

Responsible Editor: Alexia Stokes.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 379 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herridge, D.F., Giller, K.E., Jensen, E.S. et al. Quantifying country-to-global scale nitrogen fixation for grain legumes II. Coefficients, templates and estimates for soybean, groundnut and pulses. Plant Soil 474, 1–15 (2022). https://doi.org/10.1007/s11104-021-05166-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-05166-7

Keywords

Navigation