Skip to main content

Advertisement

Log in

Grazing impacts on ecosystem functions exceed those from mowing

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Land use change due to the increasing anthropogenic activities is the most important driver leading to alteration of multiple ecosystem functions. Overgrazing is thought to be one of most pervasive and significant degrading processes in grasslands, but direct comparisons with other comparable drivers of land use intensification are lacking. Our results aimed to test how single land use practices (grazing, mowing), and combined land use practices (both grazing and mowing), influence biodiversity, soils and plant function, and the coupling of aboveground and belowground functions and properties in a Eurasian steppe grassland.

Methods

We examined changes in individual functions associated with aboveground and belowground plant and soil compartments, and multiple combined functions (hereafter ‘multifunctionality’) at 317 sites along an extensive climatic gradient in Northern China. Further, we investigated the correlations (coupling) between aboveground and belowground processes under the three land use scenarios.

Results

We found a mixture of effects of grazing, mowing and mowing plus grazing. However, values of many aboveground and belowground attributes were lower when sites were grazed. Although grazed sites had lower values of soil carbon and nutrients, there were no grazing-induced changes in root carbon, nitrogen and phosphorus. More importantly, the most intense land use scenario (grazing combined with mowing) decoupled the correlations between belowground and aboveground functions compared with that of single land uses.

Conclusions

Our study demonstrates that mowing is a better long-term management method than grazing for semi-natural grasslands in the Eurasian steppe are heavily grazed. Our results demonstrate that additional land use pressures imposed when mowing and grazing are applied together can decouple the positive associations between plant richness and functions. This knowledge is critical if we are to adopt strategies to maintain diverse grassland ecosystems and the important services and functions that they provide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allan E, Manning P, Alt F, Binkenstein J, Blaser S, Blüthgen N, Böhm S, Grassein F, Hölzel N, Klaus VH, Kleinebecker T, Morris EK, Oelmann Y, Prati D, Renner SC, Rillig MC, Schaefer M, Schloter M, Schmitt B, Schöning I, Schrumpf M, Solly E, Sorkau E, Steckel J, Steffen-Dewenter I, Stempfhuber B, Tschapka M, Weiner CN, Weisser WW, Werner M, Westphal C, Wilcke W, Fischer M (2015) Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol Lett 18:834–843

    PubMed  PubMed Central  Google Scholar 

  • Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C (2014) Autophagy, plant senescence, and nutrient recycling. J Exp Bot 65:3799–3811

    PubMed  Google Scholar 

  • Bai Y, Wu J, Clark CM, Pan Q, Zhang L, Chen S, Wang Q, Han X (2012) Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient. J Appl Ecol 49:1204–1215

    CAS  Google Scholar 

  • Baoyin T, Li FY, Bao Q, Minggagud H, Zhong Y (2014) Effects of mowing regimes and climate variability on hay production of Leymus chinensis (Trin.) Tzvelev grassland in northern China. Rangel J 36:593–600

    Google Scholar 

  • Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages, biotic interactions, ecosystem processes, and global change. Oxford series in ecology and evolution. Oxford University Press, New York, USA

    Google Scholar 

  • Blüthgen N, Simons N, Jung K, Prati D, Renner S, Boch S et al (2016) Land use imperils plant and animal community stability through changes in asynchrony rather than diversity. Nat Commun 7:10697

    PubMed  PubMed Central  Google Scholar 

  • Cai Y, Wang X, Tian L, Zhao H, Xuyang LU, Yan Y (2014) The impact of excretal returns from yak and Tibetan sheep dung on nitrous oxide emissions in an alpine steppe on the Qinghai-Tibetan plateau. Soil Biol Biochem 76:90–99

    CAS  Google Scholar 

  • Casper BB, Castelli JP (2007) Evaluating plant–soil feedback together with competition in a serpentine grassland. Ecol Lett 10:394–400

    PubMed  Google Scholar 

  • Catorci A, Cesaretti S, Malatesta L, Tardella FM (2014) Effects of grazing vs mowing on the functional diversity of sub- Mediterranean productive grasslands. Appl Veg Sci 17:658–669

    Google Scholar 

  • CENMN (Comprehensive Expedition in Nei Mongol, Ningxia, Chinese Academy of Sciences) (1985) Nei Mongol Vegetation. Science Press, Beijing

  • Chillo V, Ojeda RA, Capmourteres V, Anand M (2016) Functional diversity loss with increasing livestock grazing intensity in drylands: the mechanisms and their consequences depend on the taxa. J Appl Ecol 54:986–996

    Google Scholar 

  • Daryanto S, Eldridge DJ, Throop HL (2013) Managing semi-arid woodlands for carbon storage: grazing and shrub effects on above- and belowground carbon. Agric Ecosyst Environ 169:1–11

    Google Scholar 

  • Davies KW, Boyd CS (2020) Grazing is not binomial (i.e., grazed or not grazed): a reply to Herman. BioSci 70:6–7

    Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA, Wallenstein MD, Quero JL, Ochoa V, Gozalo B, García-Gómez M, Soliveres S, García-Palacios P, Berdugo M, Valencia E, Escolar C, Arredondo T, Barraza-Zepeda C, Bran D, Carreira JA, Chaieb M, Conceição AA, Derak M, Eldridge DJ, Escudero A, Espinosa CI, Gaitán J, Gatica MG, Gómez-González S, Guzman E, Gutiérrez JR, Florentino A, Hepper E, Hernández RM, Huber-Sannwald E, Jankju M, Liu J, Mau RL, Miriti M, Monerris J, Naseri K, Noumi Z, Polo V, Prina A, Pucheta E, Ramírez E, Ramírez-Collantes DA, Romão R, Tighe M, Torres D, Torres-Díaz C, Ungar ED, Val J, Wamiti W, Wang D, Zaady E (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672–676

    CAS  PubMed  Google Scholar 

  • Deyn GBD (2017) Plant life history and above–belowground interactions: missing links. Oikos 126:497–507. https://doi.org/10.1111/oik.03967

    Article  Google Scholar 

  • Eldridge DJ, Beecham G, Grace J (2015) Do shrubs reduce the adverse effects of grazing on soil properties? Ecohydrology 8:1503–1513

    Google Scholar 

  • Eldridge DJ, Poore AGB, Ruiz-Colmenero M, Letnic M, Soliveres S (2016) Ecosystem structure, function and composition in rangelands are negatively affected by livestock grazing. Ecol Appl 26:1273–1283

    PubMed  Google Scholar 

  • Garland G, Banerjee S, Edlinger A, Oliveira EM, Herzog C, Wittwer R, Philippot L, Maestre FT, van der Heijden MGA (2020) A closer look at the functions behind ecosystem multifunctionality: a review. J Ecol 109:600–613. https://doi.org/10.1111/1365-2745.13511

    Article  Google Scholar 

  • Gao L, Kinnucan HW, Zhang Y, Qiao G (2016) The effects of a subsidy for grassland protection on livestock numbers, grazing intensity, and herders’ income in Inner Mongolia. Land Use Policy 54:302–312

    Google Scholar 

  • Habel JC, Dengler J, Janišová M, Török P, Wellstein C, Wiezik M (2013) European grassland ecosystems: threatened hotspots of biodiversity. Biodivers Conserv 22:2131–2138

    Google Scholar 

  • Han Y, Zhang Z, Wang C, Jiang F, Xia F (2012) Effects of mowing and nitrogen addition on soil respiration in three patches in an oldfield grassland in Inner Mongolia. J Plant Ecol 5:219–228

    Google Scholar 

  • He M, Zhou G, Tengfei Y, Groenigen KJV, Zhou X (2019) Grazing intensity significantly changes the C:N:P stoichiometry in grassland ecosystems. Glob Ecol Biogeogr 29:355–369. https://doi.org/10.1111/geb.13028

    Article  Google Scholar 

  • Herrera Paredes S, Lebeis SL, Bailey JK (2016) Giving back to the community: microbial mechanisms of plant–soil interactions. Funct Ecol 30:1043–1052

    Google Scholar 

  • Heyburn J, McKenzie P, Crawley MJ, Fornara DA (2017) Long-term belowground effects of grassland management: the key role of liming. Ecol Appl 27:2001–2012

    PubMed  Google Scholar 

  • Hou SL, Lü XT, Yin JX, Yang JJ, Hu YY, Wei HW et al (2019) The relative contributions of intra- and inter-specific variation in driving community stoichiometric responses to nitrogen deposition and mowing in a grassland. Sci Total Environ 20:887–893

    Google Scholar 

  • Jaramillo V, Detling JK (1988) Grazing history, defoliation, and competition: effects on shortgrass production and nitrogen accumulation. Ecology 69:1599–1608

    Google Scholar 

  • Jouquet P, Boquel E, Doan TT, Rocoy M, Orange D, Rumpel C, Duc TT (2011) Do compost and vermicopost improve marcornutrient retention and plant growth in degraded tropical soils? Compost Sci Utiliz 19:15–24

    CAS  Google Scholar 

  • Lefcheck JS, Byrnes JEK, Isbell F, Gamfeldt L, Griffin JN, Eisenhauer N, Hensel MJS, Hector A, Cardinale BJ, Duffy JE (2015) Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat Commun 6:6936

    CAS  PubMed  Google Scholar 

  • Lu X, Kelsey KC, YanY SJ, Wang X, Cheng G, Neff JC (2017) Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai–Tibetan plateau: a synthesis. Ecosphere 8:e01656. https://doi.org/10.1002/ecs2.1656

    Article  Google Scholar 

  • Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M, Garcia-Gomez M, Bowker MA, Soliveres S, Escolar C, Garcia-Palacios P, Berdugo M, Valencia E, Gozalo B, Gallardo A, Aguilera L, Arredondo T, Blones J, Boeken B, Bran D, Conceicao AA, Cabrera O, Chaieb M, Derak M, Eldridge DJ, Espinosa CI, Florentino A, Gaitan J, Gatica MG, Ghiloufi W, Gomez-Gonzalez S, Gutierrez JR, Hernandez RM, Huang X, Huber-Sannwald E, Jankju M, Miriti M, Monerris J, Mau RL, Morici E, Naseri K, Ospina A, Polo V, Prina A, Pucheta E, Ramirez-Collantes DA, Romao R, Tighe M, Torres-Diaz C, Val J, Veiga JP, Wang D, Zaady E (2012) Plant species richness and ecosystem multifunctionality in global drylands. Science 335:214–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mayfield MM, Bonser SP, Morgan JW, Aubin I, Mcnamara S, Vesk PA (2010) What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob Ecol Biogeogr 19:423–431

    Google Scholar 

  • McSherry ME, Ritchie ME (2013) Effects of grazing on grassland soil carbon: a global review. Glob Chang Biol 19:1347–1357

    PubMed  Google Scholar 

  • NSBC (National Statistical Bureau of China). China Statistical Yearbook (2019) China statistical press: Beijing, China

  • Ochoa-Hueso R, Piñeiro J, Power SA (2019) Decoupling of nutrient cycles in a Eucalyptus woodland under elevated CO2. J Ecol 107:2532–2540

    CAS  Google Scholar 

  • Peter M, Gigon A, Edwards PJ, Lüscher A (2009) Changes over three decades in the floristic composition of nutrient-poor grasslands in the Swiss alps. Biodivers Conserv 18:547–567

    Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org/

    Google Scholar 

  • Risch AC, Ochoa-Hueso R, van der Putten WH, Bump JK, Busse MD, Frey B, Gwiazdowicz DJ, Page-Dumroese DS, Vandegehuchte ML, Zimmermann S, Schütz M (2018) Size-dependent loss of aboveground animals differently affects grassland ecosystem coupling and critical functions. Nat Commun 9:3684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rumpel C, Crème A, Ngo PT, Velásquez G, Mora ML, Chabbi A (2015) The impact of grassland management on biogeochemical cycles involving carbon, nitrogen and phosphorus. J Soil Sci Plant Nut 15:353–371

    Google Scholar 

  • Ruthrof KX, Fontaine JB, Buizer M, Matusick G, McHenry MP, Hardy GESJ (2013) Linking restoration outcomes with mechanism: the role of site preparation, fertilisation and revegetation timing relative to soil density and water content. Plant Ecol 214:987–998

    Google Scholar 

  • Sankaran M, Augustine DJ (2004) Large herbivores suppress decomposer abundance in a semiarid grazing ecosystem. Ecology 85:1052–1061

    Google Scholar 

  • Schönbach P, Wan H, Gierus M, Bai Y, Müller K, Lin L, Susenbeth A, Taube F (2011) Grassland responses to grazing: effects of grazing intensity and management system in the Inner Mongolia steppe. Plant Soil 340:103–115

    Google Scholar 

  • Schuman GE, Reeder JD, Manley JT, Hart RH, Manley WA (1999) Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland. Ecol Appl 9:65–71

    Google Scholar 

  • Semmartin M, Aguiar MR, Distel R, Moretto AS, Ghersa CM (2004) Litter quality and nutrient cycling affected by grazing-induced replacements in species composition along a precipitation gradient. Oikos 107:149–161

    Google Scholar 

  • Semmartin M, Garibaldi LA, Chaneton EJ (2008) Grazing history effects on above- and below-ground litter decomposition and nutrient cycling in two co-occurring grasses. Plant Soil 303:177–189

    CAS  Google Scholar 

  • Semmartin M, Ghersa CM (2006) Intra-specific changes in plant morphology, associated with grazing, and effects on litter quality, carbon and nutrient dynamics during decomposition. Austral Ecology 31:99–105

    Google Scholar 

  • Senapati N, Chabbi A, Gastal F, Smith P, Mascher N, Naisse C (2014) Net carbon storage measure in a mowed and grazed temperate sown grassland shows potential for carbon sequestration under grazed system. Carbon Manag 5:131–144

    CAS  Google Scholar 

  • Soil Survey Staff (1951) ‘Soil survey manual. USDA Agric. Hand Book 18.’ (Govt. Printing Office: Washington DC, USA)

  • Sparks DL, Page AL, Loeppert PA, Soltanpour PN, Tabatabai MA, Johnston CT & Sumner ME. (1996). Methods of soil analysis part 3: chemical methods. Soil science Society of America and American Society of Agronomy, Madison, WI

  • TäLle M, Fogelfors H, Westerberg L, Milberg P (2015) The conservation benefit of mowing vs grazing for management of species-rich grasslands: a multi-site, multi-year field experiment. Nord J Bot 33:761–768

    Google Scholar 

  • Tang Z, Xu W, Zhou G, Bai Y, Li J, Tang X, Chen D, Liu Q, Ma W, Xiong G, He H, He N, Guo Y, Guo Q, Zhu J, Han W, Hu H, Fang J, Xie Z (2018) Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. P Natl Acad Sci USA 115:4033–4038

    Google Scholar 

  • Teague WR, Dowhower SL, Baker SA, Haile N, Conover DM (2011) Grazing management impacts on vegetation soil biota and chemical physical and hydrological properties in tall grass prairie. Agric Ecosyst Environ 141:310–322

    CAS  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Travers SK, Eldridge DJ, Val J, Oliver I (2019) Rabbits and livestock grazing alter the structure and composition of mid-storey plants in a wooded dryland. Agr Ecosyst Environ 277:53–60

  • Wahlman H, Milberg P (2002) Management of semi-natural grassland vegetation; evaluation of long-term experiment in southern Sweden. Ann Bot Fenn 39:159–166

    Google Scholar 

  • Walter J, Hein R, Beierkuhnlein C, Hammerl V, Jentsch A, Schädler M, Schuerings J, Kreyling J (2013) Combined effects of multifactor climate change and land-use on decomposition in temperate grassland. Soil Biol Biochem 60:10–18

    CAS  Google Scholar 

  • Wang X, Li FY, Wang Y, Liu X, Cheng J, Zhang J, Baoyin T, Bardgett RD (2020) High ecosystem multifunctionality under moderate grazing is associated with high plant but low bacterial diversity in a semi-arid steppe grassland. Plant Soil 448:265–276. https://doi.org/10.1007/s11104-020-04430-6

    Article  CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    CAS  PubMed  Google Scholar 

  • Wardle DA, Bonner KI, Barker GM (2002) Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Funct Ecol 16:585–595

    Google Scholar 

  • Weemstra M, Mommer L, Visser EJW, Ruijven J, Kuyper TW, Mohren GMJ, Sterck FJ (2016) Towards a multidimensional root trait framework: a tree root review. New Phytol 211:1159–1169

    CAS  PubMed  Google Scholar 

  • Yang Z, Baoyin T, Minggagud H, Sun H, Li FY (2017) Recovery succession drives the convergence, and grazing versus fencing drives the divergence of plant and soil N/P stoichiometry in a semiarid steppe of Inner Mongolia. Plant Soil 420:1–12

    Google Scholar 

  • Yao X, Zhang N, Zeng H, Wang W (2018) Effects of soil depth and plant-soil interaction on microbial community in temperate grasslands of northern China. Sci Total Environ 630:96–102

    CAS  PubMed  Google Scholar 

  • Ye XH, Pan X, Cornwell WK, Cornelissen JHC, Dong M (2013) Decoupling of above and belowground C and N pools within predominant plant species stipa grandis along a precipitation gradient in Chinese steppe zone. Biogeoences Discussions 10:4995–5013

    Google Scholar 

  • Zhou G, Luo Q, Chen Y, Hu J, He M, Gao J et al (2019) Interactive effects of grazing and global change factors on soil and ecosystem respiration in grassland ecosystems: a global synthesis. J Appl Ecol 56:2007–2019

    CAS  Google Scholar 

  • Zhou G, Zhou X, He Y, Shao J, Hu Z, Liu R, Zhou H, Hosseinibai S (2017) Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis. Glob Chang Biol 23:1167–1179

    PubMed  Google Scholar 

  • Zhu YJ, Delgado-Baquerizo M, Shan D, Yang XH, Liu YS, Eldridge DJ (2020) Diversity-productivity relationships vary in response to increasing land-use intensity. Plant Soil:1–10

  • Zhu YJ, Shan D, Wang BZ, Shi ZJ, Yang XH, Liu YS (2019) Floristic features and vegetation classification of the Hulun Buir steppe in North China: geography and climate-driven steppe diversification. Glob Ecol Conserv 20:e00741

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41971061) and International (Regional) Cooperation and Exchange Program of The National Natural Science Foundation of China (32061123005). M.D-B. was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 702057 (CLIMIFUN) and by a Large Research Grant from the British Ecological Society (Grant Agreement No. LRA17\1193, MUSGONET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Yang.

Additional information

Responsible Editor: Wen-Hao Zhang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Delgado-Baquerizo, M., Shan, D. et al. Grazing impacts on ecosystem functions exceed those from mowing. Plant Soil 464, 579–591 (2021). https://doi.org/10.1007/s11104-021-04970-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-04970-5

Keywords

Navigation