Skip to main content
Log in

Pathways to persistence: plant root traits alter carbon accumulation in different soil carbon pools

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Mineral-associated organic matter, mainly derived from microbial by-products, persists longer in soil compared to particulate organic matter (POM). POM is highly recalcitrant and originates largely from decomposing root and shoot litter. Theory suggests that root traits and growth dynamics should affect carbon (C) accumulation into these different pools, but the specific traits driving this accumulation are not clearly identified.

Methods

Twelve herbaceous species were grown for 37 weeks in monocultures. Root elongation rate (RER) was measured throughout the experiment. At the end of the experiment, we determined morphological and chemical root traits, as well as substrate induced respiration (SIR) as a proxy for microbial activity. Carbon was measured in four different soil fractions, following particle-size and density fractionation.

Results

Root biomass, RER, root diameter, hemicellulose content and SIR (characteristic of N2-fixing Fabaceae species), were all positively correlated with increased C in the coarse silt fraction. Root diameter and hemicellulose content were negatively correlated with C in the POM fraction, that was greater under non N2-fixing Poaceae species, characterized by lignin-rich roots with a high carbon:nitrogen ratio that grew slowly. The accumulation of C in different soil pools was mediated by microbial activity.

Conclusions

Our results show that root traits determine C input into different soil pools, mediated primarily by microbial activity, thus determining the fate of soil organic C. We also highlight that C in different soil pools, and not only total soil organic C, should be reported in future studies to better understand its origin, fate and dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C:

Carbon

POM:

Particulate organic matter

C:N:

Carbon – nitrogen ratio in plant tissue and/or soil

N2-fixing:

Dinitrogen fixing

t0:

Time zero, beginning of the experiment

t37:

Time 37 weeks, end of the experiment

ΔC:

Delta carbon, as difference between carbon at time 37 and carbon at time 0, in different fractions (mg C g−1 soil)

CPOM :

Carbon in the coarse POM 200–2000 μm fraction (mg C g−1 soil)

CfinePOM :

Carbon in the fine POM 50–200 μm fraction (mg C g−1 soil)

CSILT :

Carbon in the 20–50 μm coarse silt fraction (mg C g−1 soil)

CSILT + CLAY :

Carbon in the fine silt+clay <20 μm fraction (mg C g−1 soil)

ΔCSUM :

Sum of delta carbon in different fractions, ΔCSUM = ΔCPOM + ΔCfinePOM + ΔCSILT + ΔCSILT + CLAY (mg C g−1 soil)

RER:

Root elongation rate (mm d−1)

RLP:

Root length production (m)

RERNEW, RLPNEW :

RER and RLP of ‘new’ roots initiated during the 2 weeks interval between measurements

REROLD, RLPOLD :

RER and RLP of ‘old’ roots, initiated more than 2 weeks before the measurement

SIR:

Substrate induced respiration (μg C-CO2 g−1 soil h−1)

PCA:

Principal component analysis

References

  • Akaike H, (1998) Information theory and an extension of the maximum likelihood principle. In Selected papers of hirotugu akaike. Springer, New York, NY, pp. 199–213

  • Aulen M, Shipley B, Bradley R (2012) Prediction of in situ root decomposition rates in an interspecific context from chemical and morphological traits. Ann Bot 109:287–297

    Article  PubMed  CAS  Google Scholar 

  • Balesdent J, Balabane M (1996) Major contribution of roots to soil carbon storage inferred from maize cultivated soils. Soil Biol Biochem 9:1261–1263

    Article  Google Scholar 

  • Bardgett RD, Mommer L, De Vries FT (2014) Going underground : root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699

    Article  PubMed  Google Scholar 

  • Beare MH, Neely CL, Coleman DC, Hargrove WL (1990) A substrate-induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residues. Soil Biol Biochem 22(5):585–594

    Article  Google Scholar 

  • Berntson GM (1997) Topological scaling and plant root system architecture: developmental and functional hierarchies. New Phytol 135:621–634

    Article  Google Scholar 

  • Bertrand I, Chabbert B, Kurek B, Recous S (2006) Can the biochemical features and histology of wheat residues explain their decomposition in soil? Plant Soil 281:291–307

  • Besnard E, Chenu C, Balesdent J, Puget P, Arrouays D (1996) Fate of particulate organic matter in soil aggregates during cultivation. Eur J Soil Sci 47:495–503

    Article  CAS  Google Scholar 

  • Binkley D (2005) How nitrogen-fixing trees change soil carbon. In: Binkley D, Menyailo O (eds) Tree species effects on soils: implications for global change. NATO science series IV: earth Env Sci, vol 55. Springer, Dordrecht

    Google Scholar 

  • Bird JA, Kleber M, Torn MS (2008) C-13 and N-15 stabilization dynamics in soil organic matter fractions during needle and fine root decomposition. Org Geochem 39:465–477

    Article  CAS  Google Scholar 

  • Canarini A, Kaiser C, Merchant A, Richter A, Wanek W (2019) Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci 10:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapin FS III (2003) Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change. Ann Bot 91:455–463

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornu A, Besle JM, Mosoni P, Grent E (1994) Lignin- carbohydrate complexes in forages: structure and consequences in the ruminal degradation of cell-wall carbohydrates. Reprod Nutr Dev 24:385–398

    Article  Google Scholar 

  • Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol 19:988–995

    Article  PubMed  Google Scholar 

  • De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531

    Article  PubMed  Google Scholar 

  • Dekker M (1985) Biodegradation of the Hemicelluloses. In: Higuchin T (ed) Biosynthesis and biodegradation of wood components: biodegradation of the hemicelluloses. Academic Press, pp 505–533

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327

    Article  PubMed  CAS  Google Scholar 

  • Derrien D, Barot S, Chenu C, Chevallier T, Freschet GT, Garnier P, Guenet B, Hedde M, Klumpp K, Lashermes G, et al. (2016) Stocker du C dans les sols : Quels mécanismes, quelles pratiques agricoles, quels indicateurs ? Étude et Gestion des Sols 23: 193–224

  • Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. Fed of Eur Microbiol Soc 34: 150–170

  • Fehrmann RC, Weaver RW (1978) Scanning electron microscopy of Rhizobium sp. adhering to fine silt particles. Soil Sci Soc Am J 42:279–281

    Article  Google Scholar 

  • Fornara D, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–322

    Article  CAS  Google Scholar 

  • Franzluebbers AJ (1999) Potential C and N mineralization and microbial biomass from intact and increasingly disturbed soils of varying texture. Soil Biol Biochem 31:1083–1090

    Article  CAS  Google Scholar 

  • Freschet GT, Valverde‐Barrantes OJ, Tucker CM et al. (2017) Climate, soil and plant functional types as drivers of global fine‐root trait variation. Journal of Ecology, 105, 1182–1196

  • Garcia JAL, Barbas C, Probanza A, Barrientos ML, Manero FJG (2001) Low molecular weight organic acids and fatty acids in root exudates of two Lupinus cultivars at flowering and fruiting stages. Phytochem Anal 12:305–311

    Article  CAS  Google Scholar 

  • Garrido-Oter R, Nakano RT, Dombrowski N, Ma KW, Team AB, McHardy AC, Schulze-Lefert P (2018) Modular traits of the Rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host Microbe 24(1):155–167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gavinelli E, Feller C, Larré-Larrouy MC, Bacye B, Djegui Z, Nzila JD (1995) Routine method to study soil organic matter by particle-size fractionation: examples for tropical soils. Comm Soil Sci Plan 26(11&12):1749–1760

    Article  CAS  Google Scholar 

  • Griscom BW, Adams J, Ellis PW, Houghton RA, Lomax G, Miteva DA, Schlesinger WH, Shoch D, Siikamäki JV, Smith P, Woodbury P, Zganjar C, Blackman A, Campari J, Conant RT, Delgado C, Elias P, Gopalakrishna T, Hamsik MR, Herrero M, Kiesecker J, Landis E, Laestadius L, Leavitt SM, Minnemeyer S, Polasky S, Potapov P, Putz FE, Sanderman J, Silvius M, Wollenberg E, Fargione J (2017) Natural climate solutions. Proc Natl Acad Sci U S A 114:11645–11650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guyonnet JP, Cantarel AAM, Simon L, el Zahar Haichar F (2018) Root exudation rate as functional trait involved in plant nutrient‐use strategy classification. Ecology and Evolution 8(16): 7741–8638

  • Hamer U, Marschner B (2005) Priming effects in soils after combined and repeated substrate additions. Geoderma 128(1):38–51

    Article  CAS  Google Scholar 

  • Harrell FE (2007) Package ‘Hmisc’. Harrell Miscellaneous

  • Hassink J (1992) Effects of soil texture and structure on carbon and nitrogen mineralization in grassland soils. Biol Fertil Soils 14:126–134

    Article  CAS  Google Scholar 

  • Hernández MA, Romero J, Jaime C, León-pulido J (2017) Lignocellulosic biomass from fast-growing species in Colombia and their use as bioresources for biofuel production. Chem Eng Trans 58:541–546

    Google Scholar 

  • Holz M, Zarebanadkouki M, Kaestner A, Kuzyakov Y, Carminati A (2018) Rhizodeposition under drought is controlled by root growth rate and rhizosphere water content. Plant Soil 423:429–442

    Article  CAS  Google Scholar 

  • Huck MG, Taylor HM (1982) The Rhizotron as a tool for root research in advances in agronomy, ed. NC Brady, pp. 1-35: Academic Press

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Kätterer T, Bolinder MA, Andrén O, Kirchmann H, Menichetti L (2011) Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agric Ecosyst Environ 141:184–192

    Article  Google Scholar 

  • Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M (2015) Mineral protection of soil carbon counteracted by root exudates. Nat Clim Chang 5:588–595

    Article  CAS  Google Scholar 

  • King AE, Blesh J (2018) Crop rotations for increased soil carbon: Perenniality as a guiding principle. Ecol Appl 28:249–261

    Article  PubMed  Google Scholar 

  • King AE, Congreves KA, Deen B, Dun KE, Voroney RP, Wagner-riddle C (2019) Quantifying the relationships between soil fraction mass , fraction carbon, and total soil carbon to assess mechanisms of physical protection. Soil Biol Biochem 135:95–107

    Article  CAS  Google Scholar 

  • Kleber M, Nico PS, Plante A, Filley T, Kramer M, Swanston C, Sollins P (2011) Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Glob Chang Biol 17:1097–1107

    Article  Google Scholar 

  • Kleber M, Eusterhues K, Keiluweit M, Mikutta C, Mikutta R, Nico PS (2015) Mineral-organic associations: formation, properties, and relevance in soil environments. In: Advances in Agronomy, vol. 130. Elsevier Ltd, pp 1-140

  • Kogel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Larinova AA (2005) Root and rhizomicrobial respiration: a review of approaches to estimate respiration by autotrophic and heterotrophic organisms in soil. J Plant Nutr Soil Sci 168:503–520

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantifcation of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global change and food security. Science 304:1623–1627

    Article  PubMed  CAS  Google Scholar 

  • Larson JE, Funk JL (2016) Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms. New Phytol 210:827–838

    Article  PubMed  Google Scholar 

  • Lavorel S, Dıaz S, Cornelissen JHC, Garnier E, Harrison SP, McIntyre S, Juli G, Pérez-Harguinde PS, Roumet C, Urcelay C (2007) Plant functional types: are we getting any closer to the holy grail? In: Canadell J, Pitelka LF, Pataki D (eds) Terrestrial ecosystems in a changing world. Springer, Berlin, pp 171–186

    Google Scholar 

  • Lobet G, Pagès L, Draye X (2011) A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol 157:29–39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Biotechnol 1:105–114

    Article  CAS  Google Scholar 

  • Mambelli S, Bird JA, Gleixner G, Dawson TE, Torn MS (2011) Relative contribution of foliar and fine root pine litter to the molecular composition of soil organic matter after in situ degradation. Org Geochem 42:1099–1108

    CAS  Google Scholar 

  • McCormack LM, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Erik A, Iversen CM, Jackson RB (2015) Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol 207:505–518

    Article  PubMed  Google Scholar 

  • Mikutta R, Kleber M, Torn MS, Jahn R (2006) Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochem 77:25–56

    Article  CAS  Google Scholar 

  • Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D, Chambers A, Chaplot V, Chen ZS, Cheng K, Das BS, Field DJ, Gimona A, Hedley CB, Hong SY, Mandal B, Marchant BP, Martin M, McConkey BG, Mulder VL, O’Rourke S, Richer-de-Forges AC, Odeh I, Padarian J, Paustian K, Pan G, Poggio L, Savin I (2017) Soil carbon 4 per mille. Geoderma 292:59–86

    Article  Google Scholar 

  • Mohamed A, Monnier Y, Mao Z, Lobet G, Maeght JL, Ramel M, Stokes A (2017) An evaluation of inexpensive methods for root image acquisition when using rhizotrons. Plant Methods 13:1–13

    Article  Google Scholar 

  • Mohamed A, Stokes A, Mao Z, Jourdan C, Sabatier S, Pailler F, Fourtier S, Dufour L, Monnier Y (2018) Linking above- and belowground phenology of hybrid walnut growing along a climatic gradient in temperate agroforestry systems. Plant Soil 424:103

    Article  CAS  Google Scholar 

  • Mommer L, Padilla FM, van Ruijven J, de Caluwe H, Smit-Tiekstra A, Berendse F, de Kroon H (2015) Diversity effects on root length production and loss in an experimental grassland community. Funct Ecol 29:1560–1568

    Article  Google Scholar 

  • Nömmik H, Vahtras Z (1982) Retention and fixation of ammonium and ammonia in soils. In: Stevenson FJ (ed) Nitrogen in agricultural soils. Agronomy monographs, No. 22. Agronomy Society of America, Madison

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Szoecs E, Wagner H (2019) Package ‘vegan’. Community Ecology Package, R package version 1.17–2. http://CRAN.R-project.org/package=vegan

  • Paustian K, Lehmann J, Ogle S, Reay D, Robertso GP, Smith P (2016) Climate-smart soils. Nature 532:49–57

    Article  PubMed  CAS  Google Scholar 

  • Plaza-Bonilla D, Nolot JM, Passot S, Raffaillac D, Justes E (2016) Grain legume-based rotations managed under conventional tillage need cover crops to mitigate soil organic matter losses. Soil Tillage Res 156:33–43

    Article  Google Scholar 

  • Poirier V, Roumet C, Munson AD (2018) The root of the matter: linking root traits and soil organic matter stabilization processes. Soil Biol Biochem 120:246–259

    Article  CAS  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. Vienna, Austria

  • Rasse DP, Rumpel C, Dignac M (2005) Is soil carbon mostly root carbon? Mechanisms for specific stabilization. Plant Soil 269:341–356

  • Robertson AD, Paustian K, Ogle S, Wallenstein MD, Lugato E, Cotrufo FM (2019) Unifying soil organic matter formation and persistence frameworks: the MEMS model. Biogeosci 16:1225–1248

    Article  CAS  Google Scholar 

  • Rossi LMW (2019) Embankment as a carbon sink: a study on carbon sequestration pathways and mechanisms in topsoil and exposed subsoil. Ph. D. Thesis, University of Montpellier, France

  • Roumet C, Urcelay C, Díaz S, Roumet C (2006) Suites of root traits differ between annual and perennial species growing in the field. New Phytol 170:357–368

    Article  PubMed  Google Scholar 

  • Roumet C, Birouste M, Picon-Cochard C, Ghestem M, Osman N, Vrignon-Brenas S, Cao K-F, Stokes A (2016) Root structure-function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New Phytol 210:815–826

    Article  PubMed  Google Scholar 

  • Rubino M, Dungait JAJ, Evershed RP et al (2010) Carbon input belowground is the major C flux contributing to leaf litter mass loss: evidences from a (13)C labelled- leaf litter experiment. Soil Biol Biochem 42:1009–1016

    Article  CAS  Google Scholar 

  • Sanderman J, Maddern T, Baldock J (2014) Similar composition but differential stability of mineral retained organic matter across four classes of clay minerals. Biogeochemistry 121:409–424

    Article  CAS  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do Plant exudates shape the root microbiome? Trends Plant Sci 23(1):25–41

    Article  PubMed  CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  PubMed  CAS  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shahzad T, Chenu C, Genet P, Barot S, Perveen N, Mougin C, Fontaine S (2015) Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biol Biochem 80:146–155

    Article  CAS  Google Scholar 

  • Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419

    Article  PubMed  Google Scholar 

  • Simpson AJ, Simpson MJ, Smith E, Kelleher BP (2007) Microbially derived inputs to soil organic matter: are current estimates too low? Environ Sci Technol 41:8070–8076

    Article  PubMed  CAS  Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2002) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79:7–31

    Article  Google Scholar 

  • Sokol NW, Kuebbing SE, Karlsen-ayala E, Bradford MA (2019) Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytol 221:233–246

    Article  PubMed  CAS  Google Scholar 

  • Steinaker DF, Wilson SD, Peltzer DA (2010) Asynchronicity in root and shoot phenology in grasses and woody plants. Glob Chang Biol 16:2241–2251

    Article  Google Scholar 

  • Torn MS, Swanston CW, Castanha C, Trumbore SE (2009) Storage and turnover of organic matter in soil. In: Biophysico-chemical processes involving natural non-living organic matter in environmental systems. John Wiley & Sons, New York, pp 219-272

  • Van Der Krift TAJ, Berends F (2002) Root life spans of four grass species from habitats differing in nutrient availability. Funct Ecol 16(2):198–203

    Article  Google Scholar 

  • Van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. II A rapid method for the determination of fiber and lignin. J AOAC Int 46:829–835

    Article  Google Scholar 

  • Vidal A, Hirte J, Bender SF, Mayer J, Gattinger A, Höschen C, Schädler S, Iqbal TM, Mueller CW (2018) Linking 3D soil structure and plant-microbe-soil carbon transfer in the Rhizosphere. Front Environ Sci 6:1–14

    Article  Google Scholar 

  • Wang Y, Mao Z, Bakker MR, Kim JH, Brancheriau L, Buatois B, Leclerc R, Selli L, Rey H, Jourdan C, Stokes A (2018) Linking conifer root growth and production to soil temperature and carbon supply in temperate forests. Plant Soil 426:33–50

    Article  CAS  Google Scholar 

  • Warembourg FR, Roumet C, Lafont F (2003) Differences in rhizosphere carbon-partitioning among plant species of different families. Plant Soil 256:347–357

    Article  CAS  Google Scholar 

  • Wiesmeier M, Urbanski L, Hobley E, Lang B, von Lützow A, Marin-Spiotta E, van Wesemael B, Rabot E, Ließ M, Garcia-Franco N, Wollschläger U, Vogel HJ, Kögel-Knabner I (2019) Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales. Geoderma 333:149–162

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of the European Commission via the Marie Skłodowska-Curie Innovative Training Networks (ITN-ETN) project TERRE ‘Training Engineers and Researchers to Rethink geotechnical Engineering for a low carbon future’ (H2020-MSCA-ITN-2015-675762). Thanks to F. Pailler (INRAE) and D. Degueldre and the staff from the Experimental field (LabEx CeMEB, an ANR “Investissements d’avenir” program (ANR-10-LABX-04-01) for the technical help and experimental management, and to the staff at the PACE platform (LabEx CeMEB), N. Barthes, R. Leclerc and B. Buatois, for help and assistance with laboratory analyses. Thanks to Ngô Ha My (USTH, Hanoi) and S. Fourcaud-Stokes (AMAP) for their technical assistance.

Funding

Funding was provided by the project: TALVEG2 ‘An innovative approach for the management and monitoring of ecosystems’ (Programme Opérationnel Languedoc Roussillon 2014-2020, FEDER-FSE-IEJ 2015009142) and Marie Skłodowska-Curie Innovative Training Networks (ITN-ETN) project TERRE ‘Training Engineers and Researchers to Rethink geotechnical Engineering for a low carbon future’ (H2020-MSCA-ITN-2015-675762.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo M. W. Rossi.

Additional information

Responsible Editor: Hans Lambers.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1.05 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossi, L.M.W., Mao, Z., Merino-Martín, L. et al. Pathways to persistence: plant root traits alter carbon accumulation in different soil carbon pools. Plant Soil 452, 457–478 (2020). https://doi.org/10.1007/s11104-020-04469-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04469-5

Keywords

Navigation