Skip to main content
Log in

Magnesium promotes root growth and increases aluminum tolerance via modulation of nitric oxide production in Arabidopsis

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Aluminum (Al) toxicity and magnesium (Mg) deficiency often coexist in acidic soils. Nitric oxide (NO) is involved in diverse physiological processes and stress responses. Here, we investigated the role of NO in Mg-mediated root growth promotion and Al tolerance in Arabidopsis.

Methods

Physiological and pharmacological methods together with molecular and genetic analyses were used.

Results

Al toxicity- and Mg deficiency-induced NO production contributed to inhibition of primary root growth. In contrast, Mg supply promoted root growth associated with decreasing NO production under Al stress and/or Mg deficiency conditions. Magnesium decreased the activities and expression of the genes related to NO biosynthesis enzymes in Col-0 roots. The NO-associated protein 1 mutant noa1 and the nitrate reductase mutant nia1nia2 with impaired NO production showed Al toxicity- and Mg deficiency-insensitive phenotypes, further confirming involvement of NO in Mg-mediated root growth promotion and alleviation of Al toxicity.

Conclusions

Taken together, our results suggested that Mg-mediated enhancement of root growth and Al tolerance is associated with altering NO production in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Basset R, Ozuka S, Demiral T, Furuichi T, Sawatani I, Baskin TI, Matsumoto H, Yamamoto Y (2010) Aluminium reduces sugar uptake in tobacco cell cultures: a potential cause of inhibited elongation but not of toxicity. J Exp Bot 61:1597–1610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beemster GT, Baskin TI (1998) Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiol 116:1515–1526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bose J, Babourina O, Rengel Z (2011) Role of magnesium in alleviation of aluminium toxicity in plants. J Exp Bot 62:2251–2264

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

  • Cakmak I, Kirkby EA (2008) Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plant 133:692–704

    CAS  PubMed  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZC, Yamaji N, Motoyama R, Nagamura Y, Ma JF (2012) Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice. Plant Physiol 159:1624–1633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Cui WT, Zhu KK, Xie YJ, Zhang CH, Shen WB (2014) Hydrogen-rich water alleviates aluminum-induced inhibition of root elongation in alfalfa via decreasing nitric oxide production. J Hazard Mater 267:40–47

    CAS  PubMed  Google Scholar 

  • Chen Q, Kan Q, Wang P, Yu W, Yu Y, Zhao Y, Li KZ, Chen LM (2015) Phosphorylation and interaction with the 14-3-3 protein of the plasma membrane H+-ATPase are involved in the regulation of magnesium-mediated increases in aluminum-induced citrate exudation in broad bean (Vicia faba. L). Plant Cell Physiol 56:1144–1153

    CAS  PubMed  Google Scholar 

  • Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. J Exp Bot 57:471–478

    CAS  PubMed  Google Scholar 

  • Deng W, Luo KM, Li DM, Zheng XL, Wei XY, Smith W, Thammina C, Lu LT, Li Y, Pei Y (2006) Overexpression of an Arabidopsis magnesium transport gene, AtMGT1, in Nicotiana benthamiana confers Al tolerance. J Exp Bot 57:4235–4243

    CAS  PubMed  Google Scholar 

  • Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. P Natl Acad Sci USA 99(25):16314–16318

    CAS  Google Scholar 

  • Flores-Perez U, Sauret-Gueto S, Gas E, Jarvis P, Rodriguez-Concepcion M (2008) A mutant impaired in the production of plastome-encoded proteins uncovers a mechanism for the homeostasis of isoprenoid biosynthetic enzymes in Arabidopsis plastids. Plant Cell 20:1303–1315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara T, Hirai MY, Chino M, Komeda Y, Naito S (1992) Effects of sulfur nutrition on expression of the soybean seed storage protein genes in transgenic petunia. Plant Physiol 99:263–268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science. 302(5642):100–103

    CAS  PubMed  Google Scholar 

  • Guo W, Nazim H, Liang Z, Yang D (2016) Magnesium deficiency in plants: An urgent problem. Crop J 4:83–91

    Google Scholar 

  • Hermans C, Vuylsteke M, Coppens F, Cristescu SM, Harren FJM, Inze D, Verbruggen N (2010) Systems analysis of the responses to long-term magnesium deficiency and restoration in Arabidopsis thaliana. New Phytol 187:132–144

    CAS  PubMed  Google Scholar 

  • Howard AB, Alexander RW, Taylor WR (1995) Effects of magnesium on nitric oxide synthase activity in endothelial cells. Am J Phys 269:C612–C618

    CAS  Google Scholar 

  • Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Ikka T, Hirayama T, Shinozaki K, Kobayashi M (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci U S A 104:9900–9905

    PubMed  PubMed Central  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser WM, Weiner H, Kandlbinder A, Tsai CB, Rockel P, Sonoda M, Planchet E (2002) Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction. J Exp Bot 53:875–882

    CAS  PubMed  Google Scholar 

  • Kan Q, Wu WW, Yu WQ, Zhang JR, Xu J, Rengel Z, Chen LM, Cui XM, Chen Q (2016) Nitrate reductase-mediated NO production enhances cd accumulation in Panax notoginseng roots by affecting root cell wall properties. J Plant Physiol 193:64–70

    CAS  PubMed  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annual Annu Rev Plant Biol 46:237–260

    CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    CAS  PubMed  Google Scholar 

  • Liu YY, Wang RL, Zhang P, Chen Q, Luo Q, Zhu YY, Xu J (2016) The nitrification inhibitor methyl 3-(4-hydroxyphenyl) propionate modulates root development by interfering with auxin signaling via the NO/ROS pathway. Plant Physiol 171:1686–1703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Liu XX, He XL, Liu LJ, Wu H, Tang CX, Zhang YS, Jin CW (2017) Ethylene and nitric oxide interact to regulate the magnesium deficiency-induced root hair development in Arabidopsis. New Phytol 213:1242–1256

    PubMed  Google Scholar 

  • MacDiarmid CW, Gardner RC (1998) Overexpression of the Saccharomyces cerevisiae magnesium transport system confers resistance to aluminum ion. J Biol Chem 273:1727–1732

    CAS  PubMed  Google Scholar 

  • Moreau M, Lee GI, Wang Y, Crane BR, Klessig DF (2008) AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase. J Biol Chem 283:32957–32967

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nabi RBS, Tayade R, Hussain A, Kulkarni KP, Imran QM, Mun BG, Yun BW (2019) Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ Exp Bot 161:120–133

    CAS  Google Scholar 

  • Niu Y, Jin G, Zhang YS (2014) Root development under control of magnesium availability. Plant Signal Behav 9:e29720

    PubMed  PubMed Central  Google Scholar 

  • Niu YF, Jin GL, Li X, Tang CX, Zhang YS, Liang YC, Yu JQ (2015) Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana (L.) Heynh. J Exp Bot 66:3841–3854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rengel Z, Zhang WH (2003) Role of dynamics of intracellular calcium in aluminium toxicity syndrome. New Phytol 159:295–314

    CAS  PubMed  Google Scholar 

  • Rengel Z, Bose J, Chen Q, Tripathi BN (2015) Magnesium alleviates plant toxicity of aluminium and heavy metals. Crop Pasture Sci 66:1298–1307

    CAS  Google Scholar 

  • Rock E, Astier C, Lab C, Malpuech C, Nowacki W, Gueux E, Mazur A, Rayssiguier Y (1995) Magnesium deficiency in rats induces a rise in plasma nitric oxide. Magnes Res 8:237–242

    CAS  PubMed  Google Scholar 

  • Rounds MA, Larsen PB (2008) Aluminum-dependent root-growth inhibition in Arabidopsis results from AtATR-regulated cell-cycle arrest. Curr Biol 18:1495–1500

    CAS  PubMed  Google Scholar 

  • Ruiz-Herrera LF, Lopez-Bucio J (2013) Aluminum induces low phosphate adaptive responses and modulates primary and lateral root growth by differentially affecting auxin signaling in Arabidopsis seedlings. Plant Soil 371:593–609

    CAS  Google Scholar 

  • Ryan PR, Reid RJ, Smith FA (1997) Direct evaluation of the Ca2+-displacement hypothesis for Al toxicity. Plant Physiol 113:1351–1357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan PR, Tyerman SD, Sasaki T, Furuichi T, Yamamoto Y, Zhang WH, Delhaize E (2011) The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. J Exp Bot 62:9–20

    CAS  PubMed  Google Scholar 

  • Sawaki Y, Iuchi S, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M, Koyama H (2009) STOP1 regulates multiple genes that protect arabidopsis from proton and aluminum toxicities. Plant Physiol 150:281–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva IR, Smyth TJ, Israel DW, Raper CD, Rufty TW (2001a) Magnesium ameliorates aluminum rhizotoxicity in soybean by increasing citric acid production and exudation by roots. Plant Cell Physiol 42:546–554

    CAS  PubMed  Google Scholar 

  • Silva IR, Smyth TJ, Raper CD, Carter TE, Rufty TW (2001b) Differential aluminum tolerance in soybean: an evaluation of the role of organic acids. Physiol Plant 112:200–210

    CAS  PubMed  Google Scholar 

  • Stöhr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. J Exp Bot 57(3):463–470

  • Tian QY, Sun DH, Zhao MG, Zhang WH (2007) Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytol 174:322–331

    CAS  PubMed  Google Scholar 

  • Wang HH, Huang JJ, Bi YR (2010) Nitrate reductase-dependent nitric oxide production is involved in aluminum tolerance in red kidney bean roots. Plant Sci 179:281–288

    CAS  Google Scholar 

  • Watanabe T, Okada K (2005) Interactive effects of Al, ca and other cations on root elongation of rice cultivars under low pH. Ann Bot 95:379–385

    CAS  PubMed  Google Scholar 

  • Yang JL, You JF, Li YY, Wu P, Zheng SJ (2007) Magnesium enhances aluminum-induced citrate secretion in rice bean roots (Vigna umbellata) by restoring plasma membrane H+-ATPase activity. Plant Cell physiol 48:66–73

    CAS  PubMed  Google Scholar 

  • Yang ZB, Geng X, He C, Zhang F, Wang R, Horst WJ, Ding Z (2014) TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis. Plant Cell 26:2889–2904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan HM, Huang X (2016) Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant Cell Environ 39:120–135

    CAS  PubMed  Google Scholar 

  • Zhang Y, Guo J, Chen M, Li L, Wang L, Huang CF (2018) The cell cycle checkpoint regulator ATR is required for internal aluminum toxicity-mediated root growth inhibition in Arabidopsis. Front Plant Sci 9:118

    PubMed  PubMed Central  Google Scholar 

  • Zhang JR, Li DX, Wei J, Kong XY, Rengel Z, Chen Q (2019) Melatonin alleviates aluminum-induced root growth inhibition by interfering with nitric oxide production in Arabidopsis. Environ Exp Bot 161:157–165

    CAS  Google Scholar 

  • Zhou Y, Xu XY, Chen LQ, Yang JL, Zheng SJ (2012) Nitric oxide exacerbates Al-induced inhibition of root elongation in rice bean by affecting cell wall and plasma membrane properties. Phytochemistry 76:46–51

    CAS  PubMed  Google Scholar 

  • Zottini M, Costa A, De Michele R, Ruzzene M, Carimi F, Lo Schiavo F (2007) Salicylic acid activates nitric oxide synthesis in Arabidopsis. J Exp Bot 58(6):1397–1405

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Hans Lambers for his critical comments on our manuscript. This work was supported by the National Natural Science Foundation of China (No. 31960624, 31660595, 31501832 and 31360340), Science and Technology Project of Yunnan province (2017FB063 and 2015FB121). Zed Rengel was supported by Australian Research Council (DP160104434).

Author information

Authors and Affiliations

Authors

Contributions

Qi Chen conceived and designed the study, analyzed the data, interpreted the results, wrote and revised the manuscript. Dongxu Li performed most of the experiments, analyzed the data and wrote the manuscript. Wenna Ma, Jian Wei, Yawen Mao, Zhongping Peng, Jiarong Zhang, Xiangying Kong and Qinqin Han performed the experiments and provided technical assistance. Wei Fan, Ye Yang and Liangquan Wu analyzed the data and commented on the writing of the manuscript. Zed Rengel, Jianghua Chen and Xiuming Cui analyzed the data and revised the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Qi Chen.

Ethics declarations

Conflict of interest

The authors declare that they do not have a conflict of interest.

Additional information

Responsible Editor: Ismail Cakmak.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 255 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Ma, W., Wei, J. et al. Magnesium promotes root growth and increases aluminum tolerance via modulation of nitric oxide production in Arabidopsis. Plant Soil 457, 83–95 (2020). https://doi.org/10.1007/s11104-019-04274-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04274-9

Keywords

Navigation