Skip to main content
Log in

Contribution of methylation regulation of MpDREB2A promoter to drought resistance of Mauls prunifolia

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Malus prunifolia (Chinese name: Fu Ping Qiu Zi), a wild relative of cultivated apple (Malus x domestica Borkh), is extremely resistant to drought compared with domesticated cultivars, such as ‘Golden Delicious’. However, the molecular mechanisms underlying drought resistance of M. prunifolia have not been characterized. This study investigates a new regulatory mechanism to improve apple drought resistance.

Methods

M. prunifolia and ‘Golden Delicious’ were each grafted on M. hupehensis for gene expression analysis. The methylation level of the DREB2A promoter was determined by bisulfite sequencing and ChIP-qPCR. Chromatin immunoprecipitation sequencing (ChIP-seq) was used to identify target genes of MpDREB2A in apple.

Results

The exposure to drought stress stimulated the expression level of DREB2A gene more than 100-fold in M. prunifolia, but only 16-fold in ‘Golden Delicious’. This difference in gene expression could not be explained in terms of difference in leaf relative water content. Correspondingly, the methylation level of M. prunifolia DREB2A (MpDREB2A) promoter region was significantly reduced. Additionally, MpDREB2A conferred enhanced drought resistance when ectopically expressed in Arabidopsis. Over 2800 potential downstream target genes of MpDREB2A were identified by ChIP-seq and these downstream genes have diverse potential functions related to stress resistance.

Conclusions

Methylation regulation in promoter of MpDREB2A may contribute to the drought resistance of M. prunifolia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal G et al (2016) Genome-wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea. Plant Biotechnol J 14:1563–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai J et al (2015) Epigenetic downregulation of SFRP4 contributes to epidermal hyperplasia in psoriasis. J Immunol 194:4185–4198

    Article  CAS  PubMed  Google Scholar 

  • Blomberg J et al (2012) Interactions between DNA, transcriptional regulator Dreb2a and the Med25 mediator subunit from Arabidopsis thaliana involve conformational changes. Nucleic Acids Res 40:5938–5950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bustos-Sanmamed P et al (2013) Overexpression of miR160 affects root growth and nitrogen-fixing nodule number in Medicago truncatula. Funct Plant Biol 40:1208–1220

    Article  CAS  PubMed  Google Scholar 

  • Centomani I et al (2015) Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells. Protoplasma 252:1451–1459

    Article  CAS  PubMed  Google Scholar 

  • Century K, Reuber TL, Ratcliffe OJ (2008) Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol 147:20–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M et al (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305

    Article  CAS  PubMed  Google Scholar 

  • Chen J et al (2017) Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. Plant Cell 29:1425–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Gen Genomics 277:589–600

    Article  CAS  Google Scholar 

  • Clough S, Bent A (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Daccord N et al (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Dash M, Yordanov YS, Georgieva T, Tschaplinski TJ, Yordanova E, Busov V (2017) Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress. Plant J 89:692–705

    Article  CAS  PubMed  Google Scholar 

  • Datta K et al (2012) Overexpression of Arabidopsis and rice stress genes' inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnol J 10:579–586

    Article  CAS  PubMed  Google Scholar 

  • Dowen RH et al (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci U S A 109:E2183–E2191

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubouzet JG et al (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  CAS  PubMed  Google Scholar 

  • Elfving N et al (2011) The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development. Proc Natl Acad Sci USA 108:8245–8250

    Article  PubMed  PubMed Central  Google Scholar 

  • Guan Q et al (2013) A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. Plant Cell 25:342–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L et al (2018) Comparative analysis of root transcriptome profiles between drought-tolerant and susceptible wheat genotypes in response to water stress. Plant Sci 272:276–293

    Article  CAS  PubMed  Google Scholar 

  • Gruntman E, Qi Y, Slotkin RK, Roeder T, Martienssen RA, Sachidanandam R (2008) Kismeth: Analyzer of plant methylation states through bisulfite sequencing. BMC Bioinf 9 (1):371

  • Jain D, Chattopadhyay D (2010) Kismeth: analyzer of plant methylation states through bisulfite sequencing. BMC Bioinf 9:371

  • Khattab HI, Emam MA, Emam MM, Helal NM, Mohamed MR (2014) Effect of selenium and silicon on transcription factors NAC5 and DREB2A involved in drought-responsive gene expression in rice. Biol Plant 58:265–273

    Article  CAS  Google Scholar 

  • Khodadadi E et al (2017) Leaf proteomics of drought-sensitive and -tolerant genotypes of fennel. Biochim Biophys Acta, Proteins Proteomics 1865:1433–1444

    Article  CAS  PubMed  Google Scholar 

  • Kim JS et al (2012) Arabidopsis GROWTH-REGULATING FACTOR7 functions as a transcriptional repressor of abscisic acid- and osmotic stress-responsive genes, including DREB2A. Plant Cell 24:3393–3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosová K, Vítámvás P, Prášil I (2014) Wheat and barley dehydrins under cold, drought, and salinity - what can LEA-II proteins tell us about plant stress response? Front Plant Sci 5:343

    PubMed  PubMed Central  Google Scholar 

  • Kumar S, Beena A, Awana M, Singh A (2017) Salt-induced tissue-specific cytosine methylation downregulates expression of HKT genes in contrasting wheat (Triticum aestivum L.) genotypes. DNA Cell Biol 36:283–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748

    Article  CAS  PubMed  Google Scholar 

  • Lescot M et al (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levitt, J. (1980) Responses of plants to environmental stress, 2nd edition, volume 1: chilling, freezing, and high temperature stresses. Physiological Ecology

  • Li X et al (2016) Improved hybrid de novo genome assembly of domesticated apple (Malus x domestica). GigaScience 5:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao X et al (2016) Overexpression of MsDREB6.2 results in cytokinin-deficient developmental phenotypes and enhances drought tolerance in transgenic apple plants. Plant J 89:510–526

    Article  CAS  Google Scholar 

  • Liu Q et al (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T) (−Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Magwanga R et al (2018) Cotton late embryogenesis abundant (LEA2) genes promote root growth and confer drought stress tolerance in transgenic Arabidopsis thaliana. G3 (Bethesda) 8:2781–2803

    Article  Google Scholar 

  • Mao H et al (2015) A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun 6:8326–9326

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Wang Z, Yao S, Liu A (2015) The ARF2-ANT-COR15A gene cascade regulates ABA-signaling-mediated resistance of large seeds to drought in Arabidopsis. J Cell Sci 128:3922–3932

    Article  CAS  PubMed  Google Scholar 

  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274

    Article  CAS  PubMed  Google Scholar 

  • Morimoto K et al (2017) BPM-CUL3 E3 ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in Arabidopsis. Proc Natl Acad Sci U S A 114:E8528–E8536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu C, Ni C, Li X, Jia P, Wang Z, Liu H (2010) F-box protein Arabidillo-1 promotes lateral root development by depressing the functioning of GA 3 in Arabidopsis. Plant Biol 53:374–380

    Article  CAS  Google Scholar 

  • Mudge K, Janick J, Scofield S, Goldschmidt EE (2009) A history of grafting. Hortic Rev 35:437–493

    Article  Google Scholar 

  • Nie J, Liu L, Li X, Han W (2014) Decitabine a new star in epigenetic therapy: the clinical application and biological mechanism in solid tumors. Cancer Lett 354:12–20

    Article  CAS  PubMed  Google Scholar 

  • Ojangu EL, Järve K, Paves H, Truve E (2007) Arabidopsis thaliana myosin XIK is involved in root hair as well as trichome morphogenesis on stems and leaves. Protoplasma 230:193–202

    Article  CAS  PubMed  Google Scholar 

  • Omae H, Kumar A, Egawa Y, Kashiwaba K, Shono M (2005) Midday drop of leaf water content related to drought tolerance in snap bean (Phaseolus vulgaris L.). Plant Prod Sci 8:465–467

    Article  Google Scholar 

  • Park E, Nebenführ A (2013) Myosin XIK of Arabidopsis thaliana accumulates at the root hair tip and is required for fast root hair growth. PLoS One 8:e76745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedrosa A, Martins CP, Gonçalves L, Costa M (2015) Late embryogenesis abundant (LEA) constitutes a large and diverse family of proteins involved in development and abiotic stress responses in sweet orange (Citrus sinensis L. Osb.). PLoS One 10:e0145785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popova AV, Rausch S, Hundertmark M, Gibon Y, Hincha DK (2015) The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying. Biochim Biophys Acta 1854:1517–1525

    Article  CAS  PubMed  Google Scholar 

  • Qin F et al (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042–1052

    Article  CAS  PubMed  Google Scholar 

  • Qin F et al (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69

    Article  CAS  PubMed  Google Scholar 

  • Qin F et al (2008) Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20:1693–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin P et al (2016) Comparative expression of two function-known transcriptiongenes in different drought tolerance wheat cultivars under water deficit stress. Acta Botan Boreali-Occiden Sin 36:2267–2272

    Google Scholar 

  • Raikwar S, Srivastava VK, Gill SS, Tuteja R, Tuteja N (2015) Emerging importance of helicases in plant stress tolerance: characterization of Oryza sativa repair helicase XPB2 promoter and its functional validation in tobacco under multiple stresses. Front Plant Sci 6:1094

    Article  PubMed  PubMed Central  Google Scholar 

  • Rico L, Ogaya R, Barbeta A, Penuelas J (2014) Changes in DNA methylation fingerprint of Quercus ilex trees in response to experimental field drought simulating projected climate change. Plant Biol 16:419–427

    Article  CAS  PubMed  Google Scholar 

  • Sadhukhan A, Panda SK, Sahoo L (2014) The cowpea RING ubiquitin ligase VuDRIP interacts with transcription factor VuDREB2A for regulating abiotic stress responses. Plant Physiol Biochem 83:51–56

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y et al (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y et al (2006a) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma Y et al (2006b) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci U S A 103:18822–18827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao HB, Liang ZS, Shao MA (2006) Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits. Colloids Surf B Biointerfaces 47:132–139

    Article  CAS  Google Scholar 

  • Slotkin RK et al (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  CAS  PubMed  Google Scholar 

  • Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746

    Article  CAS  PubMed  Google Scholar 

  • Su M et al (2011) Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment. Plant Sci 181:652–659

    Article  CAS  PubMed  Google Scholar 

  • Sun XP (2013a) Evalution water use efficiency of different young apple scion-rootstock combinations under moderate drought. [D] Northwest Agriculture & Forestry University

  • Sun XP, Yan HL, Kang XY, Ma FW (2013b) Growth, gas exchange, and water-use efficiency response of two young apple cultivars to drought stress in two scion-one rootstock grafting system. Photosynthetica 51:404–410

    Article  Google Scholar 

  • Tamura K et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan MP (2010) Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol Biochem 48:21–26

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Wang H, Chu L, Shao H (2016) KvLEA, a new isolated late embryogenesis abundant protein gene from Kosteletzkya virginica responding to multiabiotic stresses. Biomed Res Int 2016:9823697

    PubMed  PubMed Central  Google Scholar 

  • van den Burg HA, Kini RK, Schuurink RC, Takken FL (2010) Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense. Plant Cell 22:1998–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velasco R et al (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Verslues PE, Agarwal M, Katiyaragarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  CAS  PubMed  Google Scholar 

  • Wang JW et al (2005) Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W et al (2011) Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62:1951–1960

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Liang D, Li C, Hao Y, Ma F, Shu H  (2012) Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks. Plant Physiol Biochem 51:81–89

  • Xie Y et al (2018) An atypical R2R3 MYB transcription factor increases cold hardiness by CBF-dependent and CBF-independent pathways in apple. New Phytol 218:201–218

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Wang X, Cao H, Xu H, Xu Q, Deng X (2017) Dynamic changes in methylome and transcriptome patterns in response to methyltransferase inhibitor 5-azacytidine treatment in citrus. DNA Res 24:509-522.

  • Xu J et al (2018) Single-base methylome analysis reveals dynamic epigenomic differences associated with water deficit in apple. Plant Biotechnol J 16:672–687

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W et al (2011) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233:219–229

    Article  CAS  PubMed  Google Scholar 

  • Yildirim K, Kaya Z (2017) Gene regulation network behind drought escape, avoidance and tolerance strategies in black poplar (Populus nigra L.). Plant Physiol Biochem 115:183–199

    Article  CAS  PubMed  Google Scholar 

  • Yu A et al (2013a) Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc Natl Acad Sci U S A 110:2389–2394

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Y et al (2013b) A core functional region of the RFP1 promoter from Chinese wild grapevine is activated by powdery mildew pathogen and heat stress. Planta 237:293–303

    Article  CAS  PubMed  Google Scholar 

  • Zhang B et al (2016) Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation. Proc Natl Acad Sci U S A 113:12580–12585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao T, Liang D, Wang P, Liu J, Ma F (2012) Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress. Mol Gen Genomics 287:423–436

    Article  CAS  Google Scholar 

  • Zhao K et al (2013) Isolation and characterization of dehydration-responsive element-binding factor 2C (MsDREB2C) from Malus sieversii Roem. Plant Cell Physiol 54:1415–1430

    Article  CAS  PubMed  Google Scholar 

  • Zhou SS et al (2015) Physiological and proteome analysis suggest critical roles for the photosynthetic system for high water-use efficiency under drought stress in Malus. Plant Sci 236:44–60

    Article  CAS  PubMed  Google Scholar 

  • Zhou L et al (2016) A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice. Sci Rep 6:30264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C et al (2014) Cloning and functional analysis of the promoters that upregulate carotenogenic gene expression during flower development in Gentiana lutea. Physiol Plant 150:493–504

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Xu J, Chang W, Zhang Z (2015) Isolation and molecular characterization of 1-aminocyclopropane-1-carboxylic acid synthase genes in Hevea brasiliensis. Int J Mol Sci 16:4136–4149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the 1000 Talent Youth Program of China, the National Natural Science Foundation of China (31622049, 31572106 and 31330068), the Sci-tech New Star of Shaanxi Province Program (2015 kjxx-14) and the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2017JQ3001). The authors are grateful to Zhengwei Ma for management of the apple trees.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Liang or Qingmei Guan.

Additional information

Responsible Editor: Ian Dodd.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

(PPTX 52 kb)

Table S2

(PPTX 46 kb)

Table S3

(XLSX 124 kb)

Table S4

(XLSX 34 kb)

ESM 1

(PPTX 10204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xie, Y., Lu, L. et al. Contribution of methylation regulation of MpDREB2A promoter to drought resistance of Mauls prunifolia. Plant Soil 441, 15–32 (2019). https://doi.org/10.1007/s11104-019-04149-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04149-z

Keywords

Navigation