Advertisement

Plant and Soil

, Volume 432, Issue 1–2, pp 273–288 | Cite as

Impact of high temperature on sucrose translocation, sugar content and inulin yield in Cichorium intybus L. var. sativum

  • Anne-Sophie Mathieu
  • Charlotte Tinel
  • Hélène Dailly
  • Muriel Quinet
  • Stanley Lutts
Regular Article
  • 226 Downloads

Abstract

Background and aim

Cichorium intybus is a biennal species storing inulin in taproot during the first year and flowering after vernalization. Heat impact on sugar distribution and inulin yield remains poorly documented.

Methods

Plants were cultivated under ambient or high (ambient+5 °C) temperature for 27 weeks. Plants were monthly harvested and morphological parameters, bolting rate, sugar translocation, soluble sugars and inulin content were determined.

Results

Heat reduced shoot and root growth and unexpectedly induced precocious bolting. It increased fructose contents in roots and leaves, increased root myo-inositol and reduced leaf sucrose content. At harvest, inulin content was higher in heat-treated than in control roots but total amount of inulin produced per plant was lower. Heat inhibited sugar translocation from leaves to secondary roots. Total soluble sugar content was lower in leaves but higher in roots of bolted plants compared to non-bolted ones. Bolting induced an increase in the mean degree of polymerization of inulin and root lignification.

Conclusion

High temperatures impaired inulin production as a result of root growth inhibition and reduced sugar translocation from the leaves to the roots. Heat induced precocious bolting on non-vernalized plants. Bolting reinforced root growth inhibition and thus inulin yield decrease.

Keywords

Cichorium intybus Climate change Flowering Global warming Heat stress Inulin Root chicory 

Notes

Acknowledgements

The authors are grateful to Dr. V. Dielen (S.A. Warcoing, Chicoline) for kindly providing the seeds and to Dr. Y.J. Schneider (UCL) for his valuable help in sugar translocation analysis.

Supplementary material

11104_2018_3802_MOESM1_ESM.docx (2.4 mb)
ESM 1 (DOCX 2.39 MB)

References

  1. Baert JRA (1997) The effect of sowing and harvest date and cultivar on inulin yield and composition of chicory (Cichorium intybus L.) roots. Ind Crop Prod 6:195–199CrossRefGoogle Scholar
  2. Das A, Rushton PJ, Rohila JS (2017) Metabolomic profiling of soybeans (Glycine max L.) reveals the importance of sugar and nitrogen metabolism under drought and heat stress. Plants 6:21CrossRefGoogle Scholar
  3. Desprez BF, Delesalle L, Dhellemmes C, Desprez MF, Rambuad C, Vasseur J (1999) Genetics and breeding od industrial chicory, a historical review. In: Fuchs A. (Ed.) Proceedings of the eighth seminar on inulin, 1–2 July 1999, Lille, France, pp.1–10Google Scholar
  4. Di Bartolomeo F, Van den Ende W (2015) Fructose and fructans: opposite effects on health? Plant Foods Hum Nutr 70:227–237CrossRefGoogle Scholar
  5. Dielen V, Notté C, Lutts S, Debavelaer V, Van Herck JC, Kinet JM (2005) Bolting control by low temperature in root chicory (Cichorium intybus var. sativum). Field Crop Res 94:76–85CrossRefGoogle Scholar
  6. Druart N, De Roover J, Van den Ende W, Goupil P, Van Laere A, Rambour S (2001) Sucrose assimilation during early developmental stages of chicory (Cichorium intybus L.) plants. Planta 212:436–443CrossRefGoogle Scholar
  7. Fan L, Linker R, Gepstein S, Tanimoto E, Yamamoto R, Neumann PM (2006) Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stellar &accumulation of wall phenolics. Plant Physiol 140:603–612CrossRefGoogle Scholar
  8. Fei Q, Li J, Luo Y, Ma K, Niu B, Mu C (2018) Plant molecular responses to the elevated ambient temperatures expected under climate change Plant Signal Behav 13 (in press)Google Scholar
  9. Gillaspy GE (2011) The cellular language of myo-inositol signaling. New Phytol 192:823–839CrossRefGoogle Scholar
  10. Grusak MA, Delrot S, Ntsika G (1990) Short-term effect of heat- girdles on source leaves of Vicia faba: analysis of phloem loading and carbon partitioning parameters. J Exp Bot 41:1371–1377CrossRefGoogle Scholar
  11. Guo JM, Li TL, Jiang J, Li Y, Zhao HZ (2007) Diurnal changes in sugar contents and enzymes activities involving sucrose metabolism in tomato (Lycopersicon esculentum Mill.) leaves under sub-high-temprature by day. Plant Physiol Comm 43:231–234Google Scholar
  12. Hendry G (1993) Evolutionary and natural functions of fructans: a climatological, biogeographic and mechanistic appraisal. New Phytol 123:3–14CrossRefGoogle Scholar
  13. Khagami S, Shakouri MJ, Mafakheri S, Aslanpour M (2012) Effect of different chemical fertilizers in chicory (Cichorium intybus). Ind J Sci Technol 5:1933–1935Google Scholar
  14. Luo XS, Muelta D, Hu Z, Tang H, Zhao Z, Shen S, Lee BL (2017) Inclusive development and agricultural adaptation to climate change. Curr Opin Environ Sust 24:78–83CrossRefGoogle Scholar
  15. Mathieu AS, Lutts S, Vandoorne B, Descamps C, Périlleux C, Dielen V, Van Herck JC, Quinet M (2014) High temperatures limit plant growth but hasten flowering in root chicory (Cichorium intybus) independently of vernalisation. J Plant Physio 171:109–118CrossRefGoogle Scholar
  16. Monti A, Amaducci MT, Pritoni G, Venturi G (2005) Growth, fructan yield and quality of chicory (Cichorium intybus L.) as related to photosynthetic capacity, harvest time and water regime. J Exp Bot 56:1389–1395CrossRefGoogle Scholar
  17. Neefs V, Leuridan S, Van Stallen N, De Meulemeester M, De Proft MP (2000) Frost sensitiveness of chicory roots (Cichorium intybus L.). Sci Hortic 86:185–195CrossRefGoogle Scholar
  18. Patel JR, Patel JB, Upadhyay PN, Usadadia VP (2000) The effect of various agronomic practices on the yield of chicory (Cichorium intybus). J Agric Sci 135:271–278CrossRefGoogle Scholar
  19. Pathak TB, Maskey ML, Dahlberg JA, Kearns F, Bali KM, Zaccaria D (2018) Climate change trends and impacts on California agriculture: a detailed review. Agronomy 8:25CrossRefGoogle Scholar
  20. Périlleux C, Pieltain A, Jacquemin G, Bouché F, Detry N, D’Aloia M, Thiry L, Aljochim P, Delansnay M, Mathieu AS, Lutts S, Tocquin P (2013) A root chicory MADS-box sequence and the Arabidopsis flowering repressor FLC share common features that suggest conserved function in vernalization and devernalization responses. Plant J 75:390–402CrossRefGoogle Scholar
  21. Roberfroid MB, Delzenne MM (1998) Dietary fructans. Ann Rev Nutr 18:117–143CrossRefGoogle Scholar
  22. Rogers LA, Dubos C, Surman C, Willment J, Cullis IF, Mansfield SD, Campbell MM (2005) Comparison of lignin deposition in three ectopic lignification mutants. New Phytol 168:123–140CrossRefGoogle Scholar
  23. Schittenhelm S (1999) Agronomic performances of root chicory, Jerusalem artchoke and sugarbeet in stress and non-stress environments. Crop Sci 39:1815–1823CrossRefGoogle Scholar
  24. Seghatoleslami MJ, Mousavi G, javadi H (2014) Chicory (Cichorium intybus) responses to nitrogen and plant density in Birjand, Iran. Int J Biosci 4:56–61Google Scholar
  25. Stevens CV, Meriggi A, Booten K (2001) Chemical modification of inulin, a valuable renewable resource, and its industrial applications. Biomacromolecules 2:1–16CrossRefGoogle Scholar
  26. Stoyanova S, Geuns J, Hideg E, Van den Ende W (2011) The food additives inulin and stevioside counteract oxidative stress. Int J Food Sci Nut 62:207–214CrossRefGoogle Scholar
  27. Suwa R, Hakata H, Hara H, El-Shemy HA, Adu-Gyamfi JJ, Nguyen NT, Kanai S, Lightfoot DA, Mohapatra PK, Fujita K (2010) High temperatures effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. Plant Physiol Biochem 48:124–130CrossRefGoogle Scholar
  28. Valluru R, Van den Ende W (2011) Myo-inositol and beyond – emerging networks under stress. Plant Sci 181:387–400CrossRefGoogle Scholar
  29. Van Arkel J, Vergauwen R, Sévenier R, Hakkert JC, van Laere A, Bouwmeester HJ, Koops AJ, van der Meer I (2012) Sink filling metabolizing enzymes and carbpohydrate status in field grown chicory (Cichorium intybus L.). J Plant Physiol 169:1520–1529CrossRefGoogle Scholar
  30. Van Arkel J, Sévenier R, Hakkert JC, Bouwmeester HJ, Koops AJ, van der Meer IM (2013) Tailor-made fructan synthesis in plants: a review. Carb Pol 93:48–56CrossRefGoogle Scholar
  31. Van den Ende W, Michiels A, Van Wonterghem D, Vergauwen R, Van Laere A (2000) Cloning, developmental and tissue-specific expression of sucrose:sucrose 1-fructosyl transferase from Taraxacum officinale. Fructan localization in roots. Plant Physiol 123:71–79CrossRefGoogle Scholar
  32. Van Laere A, Van Den Ende W (2002) Inulin metabolism in dicots: chicory as a model system. Plant Cell Environ 25:803–813CrossRefGoogle Scholar
  33. Vandoorne B, Mathieu AS, Van den Ende W, Vergauwen R, Périlleux C, Javaux M, Lutts S (2012a) Water stress drastically reduces root growth and inulin yield in Cichorium intybus (var. sativum) independently of photosynthesis. J Exp Bot 63:4359–4373CrossRefGoogle Scholar
  34. Vandoorne B, Beff L, Lutts S, Javaux M (2012b) Combining modeling and measurements to characterize water uptake dynamics of Cichorium intybus var. sativum under water-stress conditions. Vadose Zone 11(3).  https://doi.org/10.2136/vzj2012.0005 CrossRefGoogle Scholar
  35. Vandoorne B, Descamp C, Mathieu AS, Van den Ende W, Vergauwen R, Javaux M, Lutts S (2014) Long term intermittent flooding stress affects plant growth and inulin synthesis of Cichorium intybus (var. sativum). Plant Soil 376:291–305CrossRefGoogle Scholar
  36. Vergauwen R, Van den Ende W, Van Laere A (2000) The role of fructan in flowering of Campanula rapunculoides. J Exp Bot 51:1261–1266CrossRefGoogle Scholar
  37. Vergauwen R, Van Laere A, Van den Ende W (2003) Properties of fructan:fructan 1-fructosyltransferase from chicory and globe thistle, two Asteracean plants storing greatly different types of inulin. Plant Physiol 133:391–401CrossRefGoogle Scholar
  38. Wang Q, Cui J (2011) Perspectives and utilization technologies of chicory (Cichorium intybus L.): a review. Afr J Biotechnol 10:1966–1977Google Scholar
  39. Wei H, Bausewein A, Steininger H, Su T, Zhao H, Harms K, Greiner S, Rausch T (2016) Linking expression of fructan active enzymes, cell wall invertases and sucrose transporters with fructan profiles in growing taproot of chicory (Cichorium intybus): impact of hormonal and environmental cues. Front Plant Sci 7:1806PubMedPubMedCentralGoogle Scholar
  40. Wilson RG, Smoth JA, Yonts CD (2004) Chicory root yield and carbohydrate composition is influenced by cultivar selection, planting and harvest date. Crop Sci 44:748–752CrossRefGoogle Scholar
  41. Yemm EW, Willis J (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Anne-Sophie Mathieu
    • 1
  • Charlotte Tinel
    • 1
  • Hélène Dailly
    • 1
  • Muriel Quinet
    • 1
  • Stanley Lutts
    • 1
  1. 1.Groupe de Recherche en Physiologie végétale, Earth and Life Institute – Agronomy (ELI-A)Université catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations