Skip to main content

Advertisement

Log in

Fructose and Fructans: Opposite Effects on Health?

  • Review Article
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Fructans are fructose-based oligo-and polysaccharides of natural origin. Fructan and fructose species are sometimes confused by the great public, although they clearly have different biochemical and physiological properties. This review discusses aspects of the use of fructose and fructans in foods in the context of human health, with possible differential effects on cellular autophagy in cells of the human body. Although there are uncertainties on the daily levels of ingested fructose to be considered harmful to human health, there is an emerging consensus on the benefits of the use of fructans in functional foods, sustaining health via direct immunomodulatory and antioxidant effects or through indirect, prebiotic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AGEs:

Advanced glycation end products

ATP III:

Adult Treatment Panel III

ChREBP:

Carbohydrate-responsive element binding protein

CVD:

Cardiovascular diseases

DHAP:

Dihydroxyacetone phosphate

eNOS:

Endothelial nitric oxide synthase

ER:

Endoplasmic reticulum

FA:

Fatty acid

FOS:

Fructo-oligosaccharides

GGT:

Gamma glutamyl transferase

GI:

Glycemic index

GLUT:

Glucose transporter

Gr43a:

Gustatory receptor 43a

HFCS:

High-fructose corn syrup

IRS:

Insulin receptor substrate

JNK:

c-jun N-terminal kinase

NAFLD:

Non-alcoholic fatty liver disease

PFK-1:

Phosphofructokinase 1

PKC:

Protein kinase C

RBP-4:

Retinol binding protein-4

ROS:

Reactive oxygen species

SCFAs:

Short chain fatty acids

SREBP-1:

Sterol regulatory element-binding protein 1

TG:

Triglyceride

VLDL:

Very-low-density lipoproteins

References

  1. Oser BL (1985) Highlights in the history of saccharin toxicology. Food Chem Toxicol 23:535–542

    Article  CAS  Google Scholar 

  2. Gwak MJ, Chung SJ, Kim YJ, Lim CS (2012) Relative sweetness and sensory characteristics of bulk and intense sweeteners. Food Sci Biotechnol 21:889–894

    Article  CAS  Google Scholar 

  3. Waldrop ME, Ross CF (2014) Sweetener blend optimization by using mixture design methodology and the electronic tongue. J Food Sci 79:S1782–S1794

    Article  CAS  Google Scholar 

  4. Fuchs A (1991) Current and potential food and non-food applications of fructans. Biochem Soc Trans 19:555–560

    Article  CAS  Google Scholar 

  5. Davis SN, Mann SL, Cherrington AD (2001) Acute fructose administration improves oral glucose tolerance in adults with type 2 diabetes. Diabetes Care 24:1882–1887

    Article  Google Scholar 

  6. American Dietetic Association (2004) Use of nutritive and non-nutritive sweeteners. J Am Diet Assoc 104:255–275

    Article  Google Scholar 

  7. Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ (2002) Fructose, weight gain and the insulin resistance syndrome. Am J Clin Nutr 76:911–922

    CAS  Google Scholar 

  8. Niewoehner CB (1986) Metabolic effects of dietary versus parenteral fructose. J Am Coll Nutr 5:443–450

    Article  CAS  Google Scholar 

  9. Levine R (1986) Monosaccharides in health and disease. Annu Rev Nutr 6:211–224

    Article  CAS  Google Scholar 

  10. Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C (2004) American Heart Association, National Heart, Lung, and Blood Institute, Definition of Metabolic Syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on Scientific Issues Related to Definition. Circulation 109:433–438

    Article  Google Scholar 

  11. Bremer AA, Stanhope KL, Graham JL, Cummings BP, Wang W, Saville BR, Havel PJ (2011) Fructose-fed rhesus monkeys: a nonhuman primate model of insulin resistance, metabolic syndrome, and type 2. Clin Transl Sci 4:243–252

  12. Barone S, Fussell SL, Singh AK, Lucas F, Xu J, Kim C, Wu X, Yu Y, Amlal H, Seidler U, Zuo J, Soleimani M (2009) Slc2a5 (Glut5) is essential for the absorption of fructose in the intestine and generation of fructose-induced hypertension. J Biol Chem 284:5056–5066

    Article  CAS  Google Scholar 

  13. Dyer J, Wood IS, Palejwala A, Ellis A, Shirazi-Beechey SP (2002) Expression of monosaccharide transporters in intestine of diabetic humans. Am J Physiol Gastrointest Liver Physiol 282:G241–G248

    Article  CAS  Google Scholar 

  14. Douard V, Ferraris RP (2008) Regulation of the fructose transporter GLUT5 in health and disease. Am J Physiol Endocrinol Metab 295:E227–E237

    Article  CAS  Google Scholar 

  15. Mayes PA (1993) Intermediary metabolism of fructose. Am J Clin Nutr 58:S754–S765

    Google Scholar 

  16. Mor I, Cheung EC, Vousden KH (2011) Control of glycolysis through regulation of PFK1: old friends and recent additions. Cold Spring Harb Symp Quant Biol 76:211–216

    Article  CAS  Google Scholar 

  17. Bruynseels K, Bergans N, Gillis N, van Dorpen F, Van Hecke P, Stalmans W, Vanstapel F (1999) On the inhibition of hepatic glycogenolysis by fructose. A 31P-NMR study in perfused rat liver using the fructose analogue 2,5-anhydro-D-mannitol. NMR Biomed 12:145–156

    Article  CAS  Google Scholar 

  18. Lanaspa MA, Sanchez-Lozada LG, Choi YJ, Cicerchi C, Kanbay M, Roncal-Jimenez CA, Ishimoto T, Li N, Marek G, Duranay M, Schreiner G, Rodriguez-Iturbe B, Nakagawa T, Kang DH, Sautin YY, Johnson JR (2012) Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J Biol Chem 287:40732–40744

    Article  CAS  Google Scholar 

  19. Sluijs I, Beulens JW, Van der A DL, Spijkerman AM, Schulze MB, Van der Schouw YT (2013) Plasma uric acid is associated with increased risk of type 2 diabetes independent of diet and metabolic risk factors. J Nutr 143:80–85

    Article  CAS  Google Scholar 

  20. Cox CL, Stanhope KL, Schwarz JM, Graham JL, Hatcher B, Griffen SC, Bremer AA, Berglund L, McGahan JP, Keim NL, Havel PJ (2012) Consumption of fructose- but not glucose-sweetened beverages for 10 weeks increases circulating concentrations of uric acid, retinol binding protein-4, and gamma-glutamyl transferase activity in overweight/obese humans. Nutr Metab (Lond) 9:68

    Article  CAS  Google Scholar 

  21. Terra X, Auguet T, Broch M, Sabench F, Hernández M, Pastor RM, Quesada IM, Luna A, Aguilar C, Del Castillo D, Richart C (2013) Retinol binding protein-4 circulating levels were higher in nonalcoholic fatty liver disease vs. histologically normal liver from morbidly obese women. Obesity (Silver Spring) 21:170–177

    Article  CAS  Google Scholar 

  22. Baron AD, Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G (1995) Insulin-mediated skeletal muscle vasodilation contributes to both insulin sensitivity and responsiveness in lean humans. J Clin Invest 96:786–792

    Article  CAS  Google Scholar 

  23. Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, Ouyang X, Feig DI, Block ER, Herrera-Acosta J, Patel JM, Johnson RJ (2006) A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol 290:F625–F631

    Article  CAS  Google Scholar 

  24. Truswell AS (1992) Glycaemic index of foods. Eur J Clin Nutr 44(Suppl 2):S91–S101

    Google Scholar 

  25. Klok MD, Jakobsdottir S, Drent ML (2007) The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev 8:21–34

    Article  CAS  Google Scholar 

  26. Anderson GH, Woodend D (2003) Effect of glycemic carbohydrates on short-term satiety and food intake. Nutr Rev 61:S17–S26

    Article  Google Scholar 

  27. Shapiro A, Mu W, Roncal C, Cheng KY, Johnson RJ, Scarpace PJ (2008) Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. Am J Physiol Regul Integr Comp Physiol 295:R1370–R1375

    Article  CAS  Google Scholar 

  28. Vila L, Roglans N, Alegret M, Sanchez RM, Vazquez-Carrera M, Laguna JC (2008) Suppressor of cytokine signaling-3 (SOCS-3) and a deficit of serine/threonine (Ser/Thr) phosphoproteins involved in leptin transduction mediate the effect of fructose on rat liver lipid metabolism. Hepatology 48:1506–1516

    Article  CAS  Google Scholar 

  29. Stanhope KL, Griffen SC, Bremer AA, Vink RG, Schaefer EJ, Nakajima K, Schwarz JM, Beysen C, Berglund L, Keim N, Havel PJ (2011) Metabolic responses to prolonged consumption of glucose- and fructose-sweetened beverages are not associated with postprandial or 24-h glucose and insulin excursions. Am J Clin Nutr 94:112–119

    Article  CAS  Google Scholar 

  30. Faeh D, Minehira K, Schwarz JM, Periasamy R, Park S, Tappy L (2005) Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes 54:1907–1913

    Article  CAS  Google Scholar 

  31. Wu T, Giovannucci E, Pischon T, Hankinson SE, Ma J, Rifai N, Rimm EB (2004) Fructose, glycemic load, and quantity and quality of carbohydrate in relation to plasma C-peptide concentrations in US women. Am J Clin Nutr 80:1043–1049

    CAS  Google Scholar 

  32. Corcoran MP, Lamon-Fava S, Fielding RA (2007) Skeletal muscle lipid deposition and insulin resistance: effect of dietary fatty acids and exercise. Am J Clin Nutr 85:662–677

    CAS  Google Scholar 

  33. Pagliassotti MJ, Kang J, Thresher JS, Sung CK, Bizeau ME (2002) Elevated basal PI 3-kinase activity and reduced insulin signaling in sucrose-induced hepatic insulin resistance. Am J Physiol Endocrinol Metab 282:E170–E176

    CAS  Google Scholar 

  34. Ueno M, Bezerra RM, Silva MS, Tavares DQ, Carvalho CR, Saad MJ (2000) A high-fructose diet induces changes in pp 185 phosphorylation in muscle and liver of rats. Braz J Med Biol Res 33:1421–1427

    Article  CAS  Google Scholar 

  35. Samuel VT, Petersen KF, Shulman GI (2010) Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375:2267–2277

  36. Kim JK, Fillmore JJ, Sunshine MJ et al (2004) PKC-theta knockout mice are protected from fat-induced insulin resistance. J Clin Invest 114:823–827

  37. Wei Y, Wang D, Topczewski F, Pagliassotti MJ (2007) Fructose-mediated stress signalling in the liver: implication for hepatic insulin resistance. J Nutr Biochem 18:1–9

    Article  CAS  Google Scholar 

  38. Lim JS, Mietus-Snyder M, Valente A, Schwarz JM, Lustig RH (2010) The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol 7:251–264

    Article  CAS  Google Scholar 

  39. Chong MF, Fielding BA, Frayn KN (2007) Mechanisms for the acute effect of fructose on postprandial lipemia. Am J Clin Nutr 85:1511–1520

    CAS  Google Scholar 

  40. Bar-On H, Stein Y (1968) Effect of glucose and fructose administration on lipid metabolism in the rat. J Nutr 94:95–105

    CAS  Google Scholar 

  41. Schwarz JM, Neese R, Shackleton C, Hellerstein MK (1993) De novo lipogenesis during fasting and oral fructose in lean and obese hyperinsulinemic subjects. Diabetes 42(Suppl):1–39A

    Google Scholar 

  42. McGarry JD, Brown NF (1997) The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 244:1–14

    Article  CAS  Google Scholar 

  43. Matsuzaka T, Shimano H, Yahagi N, Amemiya-Kudo M, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Tomita S, Sekiya M, Hasty A, Nakagawa Y, Sone H, Toyoshima H, Ishibashi S, Osuga J, Yamada N (2004) Insulin-independent induction of sterol regulatory element-binding protein-1c expression in the livers of streptozotocin-treated mice. Diabetes 53:560–569

    Article  CAS  Google Scholar 

  44. Stanhope KL, Schwarz JM, Keim NL et al (2009) Consuming fructose-sweetened, not glucose- sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 119:1322–1334

    Article  CAS  Google Scholar 

  45. Rippe JM, Angelopoulos TJ (2013) Sucrose, high-fructose corn syrup, and fructose, their metabolism and potential health effects : what do we really know? Adv Nutr 4:236–245

    Article  CAS  Google Scholar 

  46. White JS (2013) Challenging the fructose hypothesis: new perspectives on fructose consumption and metabolism. Adv Nutr 4:246–256

  47. Laughlin MR (2014) Normal roles for dietary fructose in carbohydrate metabolism. Nutrients 6:3117–3129

    Article  Google Scholar 

  48. Livesey G, Taylor R (2008) Fructose consumption and consequences for glycation, plasma triacylglycerol, and body weight: meta-analyses and meta-regression models of intervention studies. Am J Clin Nutr 88:1419–1437

    CAS  Google Scholar 

  49. Aeberli I, Hochuli M, Gerber P (2013) Moderate amounts of fructose consumption impair insulin sensitivity in healthy young men. A randomized controlled trial. Diabetes Care 36:150–156

    Article  CAS  Google Scholar 

  50. Valluru R, Van den Ende W (2008) Plant fructans in stress environments: emerging concepts and future prospects. J Exp Bot 59:2905–2916

  51. Di Bartolomeo F, Startek JB, Van den Ende W (2013) Prebiotics to fight diseases: reality or fiction? Phytother Res 27:1457–1473

    Google Scholar 

  52. López MG, Urías-Silvas JE (2007) Agave fructans as prebiotics. Recent Advances in Fructooligosaccharides. Eds Shiomi, N., Benkeblia, N. and Onodera. Pp 297–310

  53. Tamura K, Kawakami A, Sanada Y, Tase K, Komatsu T, Yoshida M (2009) Cloning and functional analysis of a fructosyltransferase cDNA for synthesis of highly polymerized levans in timothy (Phleum pratense L.). J Exp Bot 60:893–905

    Article  CAS  Google Scholar 

  54. Incoll, LD, Bonnett GD (1993). The occurrence of fructan in food plants. In: Inulin and Inulin-containing Crops. Ed. A Fuchs. Pp 309–322

  55. Lammens W, Le Roy K, Schroeven L, Van Laere A, Rabijns A, Van den Ende W (2009) Structural insights into glycoside hydrolase family 32 and 68 enzymes: functional implications. J Exp Bot 60:727–740

    Article  CAS  Google Scholar 

  56. Delgado GTC, da Silva Cunha Tamashiro WM, Maróstica MRJ, Pastore GM (2013) Yacon (Smallanthus sonchifolius): a functional food. Plant Foods Hum Nutr 68:222–228

    Article  CAS  Google Scholar 

  57. Kelly G (2008) Inulin-type prebiotics—a review: part 1. Alter Med Rev 13:315–329

    Google Scholar 

  58. Peshev D, Van den Ende W (2014) Fructans: prebiotics and immunomodulators. J Funct Foods 8:384–357

    Article  Google Scholar 

  59. Van Loo J, Coussement P, De Leenheer L, Hoebregs H, Smits G (1995) On the presence of inulin and oligofructose as natural ingredients in the Western diet. Crit Rev Food Sci Nutr 35:525–552

    Article  Google Scholar 

  60. Allsopp P, Possemiers S, Campbell D, Oyarzábal IS, Gill C, Rowland I (2013) An exploratory study into the putative prebiotic activity of fructans isolated from Agave angustifolia and the associated anticancer activity. Anaerobe 22:38–44

    Article  CAS  Google Scholar 

  61. Tarini J, Wolever TMS (2010) The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects. Appl Physiol Nutr Metab 35:9–16

    Article  CAS  Google Scholar 

  62. Kleessen B, Sykura B, Zunft HJ, Blaut M (1997) Effects of inulin and lactose on faecal microflora, microbial activity and bowel habit in elderly constipated persons. Am J Clin Nutr 65:1397–1402

    CAS  Google Scholar 

  63. Rumessen JJ, Bode S, Hamberg O, Hoyer EG (1990) Fructans of Jerusalem artichoke: intestinal transport, absorption, fermentation and influence on blood glucose, insulin and C-peptide responses in healthy subjects. Am J Clin Nutr 52:675–680

  64. Scholz-Ahrens KE, Schrezenmeir J (2007) Inulin and oligofructose and mineral metabolism: the evidence from animal trials. J Nutr 137:2513S

  65. Rendon-Huerta JA, Juarez-Flores B, Pinos-Rodriguez JM, Aguirre-Rivera JR, Delgado-Portales RE (2012) Effect of different sources of fructans on body weight, blood metabolites and fecal bacteria in normal and obese non-diabetic and diabetic rats. Plant Foods Hum Nutr 67:64–70

    Article  CAS  Google Scholar 

  66. Sauer J, Richter KK, Pool-Zobel BL (2007) Physiological concentrations of butyrate favourably modulates genes of oxidative and metabolic stress in primary human colon cells. J Nutr Biochem 18:736–745

    Article  CAS  Google Scholar 

  67. Vogt L, Ramasamy U, Meyer D, Pullens G, Venema K, Faas MM, Schols HA, de Vos P (2013) Immune modulation by different types of β2 → 1-fructans is toll-like receptor dependent. Plos ONE 8:7

    Google Scholar 

  68. Ortega-Gonzales M, Molina Santiago C, Lopez Posadas R, Pacheco D (2014) Fructooligosacharides reduce Pseudomonas aeruginosa PAO1 pathogenicity through distinct mechanisms. Plos ONE 9:1

    Google Scholar 

  69. Ten Bruggencate SJ, Bovee-Oudenhoven IM, Lettink-Wissink ML, Katan MB, van der Meer R (2006) Dietary fructooligosaccharides affect intestinal barrier function in healthy men. J Nutr 136:70–74

    Google Scholar 

  70. Keunen E, Peshev D, Vangronsveld J, Van den Ende W, Cuypers A (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress. Extending the traditional concept. Plant Cell Environ 36:1242–1255

    Article  CAS  Google Scholar 

  71. Van den Ende W, Peshev D, De Gara L (2011) Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract. Trends Food Sci Technol 22:689–697

    Article  Google Scholar 

  72. Pasqualetti V, Altomare A, Guarino MPL, Locato V, Cocca S, Cimini S, Palma R, Alloni R, De Gara L, Cicala L (2014) Antioxidant activity of inulin and its role in the prevention of human colonic muscle cell impairment induced by lipopolysaccharide mucosal exposure. Plos ONE 9, e9803

    Article  Google Scholar 

  73. Arroyo DS, Gaviglio EA, Peralta Ramos JM, Bussi C, Rodriguez-Galan MC, Irribaren P (2014) Autophagy in inflammation, infection, neurodegeneration and cancer. Int Immunopharmacol 18:55–65

  74. Van den Ende W (2013) Multifunctional fructans and raffinose family oligosaccharides. Front Plant Sci 4:247

    Article  Google Scholar 

  75. Viollet B, Foretz M, Guigas B, Horman S, Dentin R, Bertrand L, Hue L (2006) Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J Physiol 574:41–53

    Article  CAS  Google Scholar 

  76. Kroemer G, Mariño G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    Article  CAS  Google Scholar 

  77. Peng L, Li Z, Green RS, Holzman IR, Lin J (2009) Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 139:1619–1625

    Article  CAS  Google Scholar 

  78. Eiwegger T, Stahl B, Haidl P, Schmitt J, Boehm G, Dehlink E, Urbanek R, Szepfalusi Z (2010) Prebiotic oligosaccharides: in vitro evidence for gastrointestinal epithelial transfer and immunomodulatory properties. Pediatr Allergy Immunol 21:1179–1188

    Article  Google Scholar 

  79. Higuchi T, Nishikawa J, Inoue H (2015) Sucrose induces vesicle accumulation and autophagy. J Cell Biochem 116:609–617

    Article  CAS  Google Scholar 

  80. Kang Y-L, Saleem MA, Chan KW, Yung BY-M, Law HK-W (2014) Trehalose, an mTOR independent autophagy inducer, alleviates human podocyte injury after puromycin aminonucleoside treatment. PLoS ONE 9, e113520

    Article  Google Scholar 

  81. Giordano S, Darley-Ismar V, Zhang J (2014) Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. Redox Biol 2:82–90

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Wim Van den Ende is supported by funding from FWO Vlaanderen. The authors thank Lukasz Pawel Tarkowski for his assistance in drawing figures.

Conflict of Interest

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Van den Ende.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Bartolomeo, F., Van den Ende, W. Fructose and Fructans: Opposite Effects on Health?. Plant Foods Hum Nutr 70, 227–237 (2015). https://doi.org/10.1007/s11130-015-0485-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-015-0485-6

Keywords

Navigation