Skip to main content

Advertisement

Log in

The contribution of Stylosanthes guianensis to the nitrogen cycle in a low input legume-rice rotation under conservation agriculture

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Legumes integrated in crop rotations are intended to improve crop nitrogen (N) supply and yield. In conservation agriculture (CA) systems under low input conditions on highly weathered tropical soils, experimental evidence for these benefits is lacking. To understand the mechanisms and evaluate the impact of the legume N on the subsequent crop, an in-depth study on N dynamics in the soil-plant system was conducted.

Methods

In Madagascar, a CA based crop rotation with the perennial forage legume Stylosanthes guianensis (stylo) and upland rice (rice/stylo – stylo - rice/stylo) was established under three fertilization regimes. In addition, rice was grown in a non-CA bare fallow rotation without fertilizer. Over the three years N2 fixed in stylo shoots, the incorporation of stylo shoot (mulch) N into soil N pools and mulch N uptake by rice was quantified using 15N techniques and mulch and stylo root residue decomposition was investigated in a litterbag study.

Results

N2 fixed in stylo shoots ranged from 96 to 122 kg N ha−1. Between 50 to 70% of stylo mulch and root residues decomposed during the third cropping season. Without fertilizer, grain yield of rice after the fallow with stylo was about 70% greater than after bare fallow, corresponding to 11 kg N ha−1 greater N uptake. Recoveries of stylo mulch N after rice harvest were on average 64% in soil, with about 3% in each of the microbial and mineral N pools, with 39% on the soil surface, and 6% in the rice crop. The N input via stylo seed, leaf litter and belowground N totalled about three times the amount of N contained in stylo mulch, which usually is considered as major rice N source.

Conclusions

Legumes, like stylo, can improve crop N supply and yield in low input CA cropping systems on highly weathered tropical soils. To explain the impact and mechanisms involved requires a consideration of all legume-N components beyond the mulch N present at the onset of the rice-cropping season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CA:

Conservation agriculture

CA-NON:

CA based upland rice - stylo fallow rotation were rice received no fertilizer

CA-FYM:

CA based upland rice - stylo fallow rotation were rice received farmyard manure

CA-MIN:

CA based upland rice - stylo fallow rotation were rice received mineral fertilizer

DM:

Dry matter

MC-NON:

Mono cropped upland rice - bare fallow rotation were rice received no fertilizer

%Ndfa:

Proportion of total N derived from the fixation of atmospheric N2

%Ndfm:

Proportion of N derived from stylo mulch N in a plant or soil N pool

SD:

Standard deviation

References

  • Agishi E (1991) A bibliography on forage legumes in Africa. Working doc no A1. Forage agronomy section. ILCA, Addis Ababa

  • Akanvou R, Kropff MJ, Bastiaans L, Becker M (2002) Evaluating the use of two contrasting legume species as relay intercrop in upland rice cropping systems. Field Crop Res 74:23–36. https://doi.org/10.1016/S0378-4290(01)00198-8

    Article  Google Scholar 

  • Amarger N, Mariotti A, Mariotti F, Durr JC, Bourguignon C, Lagacherie B (1979) Estimate of symbiotically fixed nitrogen in field-grown soybeans using variations in N-15 natural abundance. Plant Soil 52:269–280. https://doi.org/10.1007/Bf02184565

    Article  CAS  Google Scholar 

  • Anderson JM, Hetherington SL (1999) Temperature, nitrogen availability and mixture effects on the decomposition of heather [Calluna Vulgaris (L.) hull] and bracken [Pteridium Aquilinum (L.) Kuhn] litters. Funct Ecol 13:116–124. https://doi.org/10.1046/j.1365-2435.1999.00014.x

    Article  Google Scholar 

  • Beare M, Gregorich E (2007) Physically Uncomplexed organic matter. Soil sampling and methods of analysis. CRC Press, Second Edition

    Google Scholar 

  • Beare MH, Parmelee RW, Hendrix PF, Cheng WX, Coleman DC, Crossley DA (1992) Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecol Monogr 62:569–591. https://doi.org/10.2307/2937317

    Article  Google Scholar 

  • Becker M, Johnson DE (1998) Legumes as dry season fallow in upland rice-based systems of West Africa. Biol Fertil Soils 27:358–367. https://doi.org/10.1007/S003740050444

    Article  CAS  Google Scholar 

  • Birch HF (1964) Mineralisation of plant nitrogen following alternate wet and dry conditions. Plant Soil 20:43–49

    Article  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. https://doi.org/10.1016/0038-0717(85)90144-0

    Article  CAS  Google Scholar 

  • Cabrera ML, Kissel DE (1989) Review and simplification of calculations in15N tracer studies. Fertilizer Research 20:11–15. https://doi.org/10.1007/bf01055396

    Article  CAS  Google Scholar 

  • Cadisch G, Sylvester-Bradley R, Nösberger J (1989) 15N-based estimation of nitrogen fixation by eight tropical forage-legumes at two levels of P:K supply. Field Crop Res 22:181–194. https://doi.org/10.1016/0378-4290(89)90091-9

    Article  Google Scholar 

  • Cadisch G, Hairiah K, Giller KE (2000) Applicability of the natural N-15 abundance technique to measure N-2 fixation in Arachis Hypogaea grown on an Ultisol. Neth J Agr Sci 48:31–45

    CAS  Google Scholar 

  • Cameron AG (1996) Evaluation of tropical pasture species as leys in the semi-arid tropics of northern Australia. Aust J Exp Agr 36:929–935. https://doi.org/10.1071/Ea9960929

    Article  Google Scholar 

  • Chianu J, Chianu J, Mairura F (2012) Mineral fertilizers in the farming systems of sub-Saharan Africa. A review. Agron Sustain Dev 32:545–566. https://doi.org/10.1007/s13593-011-0050-0

    Article  CAS  Google Scholar 

  • Cobo JG, Barrios E, Kass DCL, Thomas RJ (2002) Decomposition and nutrient release by green manures in a tropical hillside agroecosystem. Plant Soil 240:331–342. https://doi.org/10.1023/a:1015720324392

    Article  CAS  Google Scholar 

  • Danso SKA, Hardarson G, Zapata F (1993) Misconceptions and practical problems in the use of N-15 soil enrichment techniques for estimating N2 fixation. Plant Soil 152:25–52. https://doi.org/10.1007/Bf00016331

    Article  Google Scholar 

  • deLeeuw PN, Saleem MA, Nyamu AM (1992) Stylosanthes as a forage and fallow crop. In: PN deLeeuw, MA Saleem, AM Nyamu (eds) Proceedings of the Regional Workshop on the Use of Stylosanthes in West Africa held in Kaduna, Nigeria, 26–31 October 1992. International livestock Centre for Africa, Addis Ababa, Ethiopia

  • Dourado-Neto D, Powlson D, Bakar RA, Bacchi OOS, Basanta MV, Cong P, Keerthisinghe G, Ismaili M, Rahman SM, Reichardt K, Safwat MSA, Sangakkara R, Timm LC, Wang JY, Zagal E, van Kessel C (2010) Multiseason recoveries of organic and inorganic Nitrogen-15 in tropical cropping systems. Soil Sci Soc Am J 74:139–152. https://doi.org/10.2136/sssaj2009.0192

    Article  CAS  Google Scholar 

  • Douxchamps S, Humbert FL, van der Hoek R, Mena M, Bernasconi SM, Schmidt A, Rao I, Frossard E, Oberson A (2010) Nitrogen balances in farmers fields under alternative uses of a cover crop legume: a case study from Nicaragua. Nutr Cycl Agroecosyst 88:447–462. https://doi.org/10.1007/S10705-010-9368-2

    Article  Google Scholar 

  • Douxchamps S, Frossard E, Bernasconi SM, van der Hoek R, Schmidt A, Rao IM, Oberson A (2011) Nitrogen recoveries from organic amendments in crop and soil assessed by isotope techniques under tropical field conditions. Plant Soil 341:179–192. https://doi.org/10.1007/S11104-010-0633-6

    Article  CAS  Google Scholar 

  • Fageria NK, Baligar VC, Bailey BA (2005) Role of cover crops in improving soil and row crop productivity. Commun Soil Sci Plant Anal 36:2733–2757. https://doi.org/10.1080/00103620500303939

    Article  CAS  Google Scholar 

  • FAO (2011) Green manure/cover crops and crop rotation in conservation agriculture on small farms. Food & agriculture organization of the united nations (FAO)

  • Fisher MJ, Ludlow MM (1984) 8 - adaptation to water deficits in Stylosanthes. In: Stace HM, Edye LA (eds) The biology and agronomy of Stylosanthes. Academic Press

  • Fosu M, Kühne RF, Vlek PG (2003) Recovery of cover-crop-N in the soil-plant system in the Guinea savannah zone of Ghana. Biol Fert Soils 39:117–122. https://doi.org/10.1007/s00374-003-0677-3

    Article  Google Scholar 

  • Frey SD, Elliott ET, Paustian K, Peterson GA (2000) Fungal translocation as a mechanism for soil nitrogen inputs to surface residue decomposition in a no-tillage agroecosystem. Soil Biol Biochem 32:689–698. https://doi.org/10.1016/S0038-0717(99)00205-9

    Article  CAS  Google Scholar 

  • Fustec J, Lesuffleur F, Mahieu S, Cliquet JB (2010) Nitrogen rhizodeposition of legumes. A review. Agron Sustain Dev 30:57–66. https://doi.org/10.1051/agro/2009003

    Article  CAS  Google Scholar 

  • Gardener CJ (1984) 17 - the dynamics of Stylosanthes pastures. In: Stace HM, Edye LA (eds) The biology and agronomy of Stylosanthes. Academic Press

  • Gardener CJ, Megarrity RG, Mcleod MN (1982) Seasonal-changes in the proportion and quality of plant-parts of 9 Stylosanthes lines. Aust J Exp Agr 22:391–401. https://doi.org/10.1071/Ea9820391c

    Google Scholar 

  • Giller K (2001) Nitrogen fixation in tropical cropping systems. Wageningen University, The Netherlands

    Book  Google Scholar 

  • Goerges T, Dittert K (1998) Improved diffusion technique for 15N:14N analysis of ammonium and nitrate from aqueous samples by stable isotope spectrometry. Commun Soil Sci Plant Anal 29:361–368. https://doi.org/10.1080/00103629809369950

    Article  CAS  Google Scholar 

  • Hart SC, Myrold DD (1996) 15N tracer studies of soil nitrogen transformations. In: Boutton TW, Yamasaki SI (eds) Mass spectrometry of soils. Dekker Inc., New York

    Google Scholar 

  • Hart SC, Firestone MK, Paul EA, Smith JL (1993) Flow and fate of soil-nitrogen in an annual grassland and a young mixed-conifer Forest. Soil Biol Biochem 25:431–442. https://doi.org/10.1016/0038-0717(93)90068-M

    Article  Google Scholar 

  • Hartwig UA (1998) The regulation of symbiotic N2 fixation: a conceptual model of N feedback from the ecosystem to the gene expression level. Perspect Plant Ecol, Evol Syst 1:92–120

    Article  Google Scholar 

  • Hauck RD, Bremner JM (1976) Use of tracers for soil and fertilizer nitrogen research. Adv Agron 28:219–266. https://doi.org/10.1016/S0065-2113(08)60556-8

    Article  Google Scholar 

  • Haynes RJ (2005) Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Academic Press, Adv Agron

    Book  Google Scholar 

  • Hobbs PR, Sayre K, Gupta R (2008) The role of conservation agriculture in sustainable agriculture. Philos Trans R Soc Lond Ser B Biol Sci 363:543–555. https://doi.org/10.1098/rstb.2007.2169

    Article  Google Scholar 

  • Holland EA, Coleman DC (1987) Litter placement effects on microbial and organic-matter dynamics in an agroecosystem. Ecology 68:425–433. https://doi.org/10.2307/1939274

    Article  Google Scholar 

  • Hood R, Merckx R, Jensen ES, Powlson D, Matijevic M, Hardarson G (2000) Estimating crop N uptake from organic residues using a new approach to the N-15 isotope dilution technique. Plant Soil 223:33–44. https://doi.org/10.1023/A:1004789103949

    Article  CAS  Google Scholar 

  • Hood R, van Kessel C, Vanlauwe B (2008) Use of tracer technology for the management of organic sources In: IAEA (ed) Guidelines on Nitrogen management in agricultural systems. . IAEA-TCS 29, Vienna, Austria

  • Hopkinson JM, Walker B (1984) 21 - seed production of Stylosanthes cultivars in Australia. In: Stace HM, Edye LA (eds) The biology and agronomy of Stylosanthes. Academic Press

  • Husson O, Rakotondramanana A, Charpentier H, Michellon R, Ramaroson I, Razanamparany C, Andriantsilavo M, Moussa NLS (2006) An approach for creation, training and extension of systems based on direct seeding on permanent soil cover in Madagascar. In: Husson O, Rakotondralambo A (eds) In: Articles et posters présentés au troisième congrès mondial d’agriculture de conservation 2005. GSDM (Groupement Semis Direct de Madagascar), Nairobi, Kenya

    Google Scholar 

  • Jehne W (1984) 11 - mycorrhizas and Stylosanthes. In: Stace HM, Edye LA (eds) The biology and agronomy of Stylosanthes. Academic Press

  • Joergensen RG, Mueller T (1996) The fumigation-extraction method to estimate soil microbial biomass: calibration of the k(EN) value. Soil Biol Biochem 28:33–37. https://doi.org/10.1016/0038-0717(95)00101-8

    Article  CAS  Google Scholar 

  • Jones A, Breuning-Madsen H, Brossard M, Dampha A, Deckers J, Dewitte O, Gallali T, Hallett S, Jones R, Kilasara M, Le Roux P, Micheli E, Montanarella L, Spaargaren O, Thiombiano L, Van Ranst E, Yemefack M, Zougmoré R (2013) Soil atlas of Africa. European comission, publications office of the european union, Luxembourg

  • Kassim G, Martin JP, Haider K (1981) Incorporation of a wide variety of organic substrate carbons into soil biomass as estimated by the fumigation procedure. Soil Sci Soc Am J 45:1106–1112

    Article  CAS  Google Scholar 

  • Koroleff F (1983) Determination of nutrients. In: Grasshoff K et al (eds) Methods of seawater analysis. Verlag Chemie, Weinheim

    Google Scholar 

  • Kull CA (2016) Bushfire in Madagascar: natural hazard, useful tool, and change agent. In: G Bankoff, Christensen J (eds) Natural hazards and peoples in the Indian Ocean world: bordering on danger. Palgrave Macmillan US, New York

    Google Scholar 

  • Lal R, Stewart BA (2014) Sustainable intensification of smallholder agriculture. CRC Press, Soil Management of Smallholder Agriculture

    Book  Google Scholar 

  • Linder CR, Moore LA, Jackson RB (2000) A universal molecular method for identifying underground plant parts to species. Mol Ecol 9:1549–1559. https://doi.org/10.1046/J.1365-294x.2000.01034.X

    Article  CAS  PubMed  Google Scholar 

  • Little DA, McIvor JG, McLean RW (1984) 19 - the chemical composition and nutritive value of Stylosanthes. In: Stace HM, Edye LA (eds) The biology and agronomy of Stylosanthes. Academic Press

  • Maltas A, Corbeels M, Scopel E, Wery J, da Silva FAM (2009) Cover crop and nitrogen effects on maize productivity in no-tillage Systems of the Brazilian Cerrados. Agron J 101:1036–1046. https://doi.org/10.2134/Agronj2009.0055

    Article  CAS  Google Scholar 

  • Matos ED, Mendonca ED, Cardoso IM, de Lima PC, Freese D (2011) Decomposition and nutrient release of leguminous plants in coffee agroforestry systems. Rev Bras Cienc Solo 35:141–149

    Article  CAS  Google Scholar 

  • Mayer J, Buegger F, Jensen ES, Schloter M, Hess J (2003) Estimating N rhizodeposition of grain legumes using a N-15 in situ stem labelling method. Soil Biol Biochem 35:21–28. https://doi.org/10.1016/S0038-0717(02)00212-2

    Article  CAS  Google Scholar 

  • McKeon GM, Mott JJ (1984) 16 - seed biology of Stylosanthes. In: Stace HM, Edye LA (eds) The biology and agronomy of Stylosanthes. Academic Press

  • McNeill AM, Fillery IRP (2008) Field measurement of lupin belowground nitrogen accumulation and recovery in the subsequent cereal-soil system in a semi-arid Mediterranean-type climate. Plant Soil 302:297–316. https://doi.org/10.1007/S11104-007-9487-Y

    Article  CAS  Google Scholar 

  • Médiène S, Valantin-Morison M, Sarthou J-P, de Tourdonnet S, Gosme M, Bertrand M, Roger-Estrade J, Aubertot J-N, Rusch A, Motisi N, Pelosi C, Doré T (2011) Agroecosystem management and biotic interactions: a review. Agron Sustain Dev 31:491–514. https://doi.org/10.1007/s13593-011-0009-1

    Article  Google Scholar 

  • Mhlanga B, Cheesman S, Maasdorp B, Mupangwa W, Thierfelder C (2015) Contribution of cover crops to the productivity of maize-based conservation agriculture Systems in Zimbabwe. Crop Sci 55:1791–1805. https://doi.org/10.2135/cropsci2014.11.0796

    Article  Google Scholar 

  • Michellon R, Husson O, Moussa N, Randrianjafizanaka MT, Naudin K, Letourmy P, Andrianaivo A-P, Rakotondramanana, Raveloarijoana N, Enjalric F, Penot E, Séguy L (2011) Striga Asiatica: a driving-force for dissemination of conservation agriculture systems based on Stylosanthes Guianensis in Madagascar. World congress on conservation agriculture. 5, AUS

  • Mommer L, Wagemaker CAM, De Karron H, Ouborg NJ (2008) Unravelling below-ground plant distributions: a real-time polymerase chain reaction method for quantifying species proportions in mixed root samples. Mol Ecol Resour 8:947–953. https://doi.org/10.1111/j.1755-0998.2008.02130.x

    Article  CAS  PubMed  Google Scholar 

  • Mott JJ, Mckeon GM, Gardener CJ, Tmannetje L (1981) Geographic-Variation in the Reduction of Hard Seed Content of Stylosanthes Seeds in the Tropics and Subtropics of Northern Australia. Aust J Agr Res 32:861–869. https://doi.org/10.1071/Ar9810861

    Article  Google Scholar 

  • Muhr L, Tarawali SA, Peters M, Schultze-Kraft R (2002) Soil mineral N dynamics and maize grain yields following Centrosema Macrocarpum and Stylosanthes Guianensis: effects of different rotations and varying levels of N fertiliser. Field Crop Res 78:197–209. https://doi.org/10.1016/s0378-4290(02)00135-1

    Article  Google Scholar 

  • Nan ZB, Hanson J, Yeshi WM (1998) Effects of sulphuric acid and hot water treatments on seedborne fungi and germination of Stylosanthes Hamata, S-guianensis and S-scabra. Seed Sci Technol 26:33–43

    Google Scholar 

  • Nguluu SN, Probert ME, McCown RL, Myers RJK, Waring SA (2001) Isotopic discrimination associated with symbiotic nitrogen fixation in stylo (Stylosanthes Hamata L.) and cowpea (Vigna Unguiculata L.) Nutr Cycl Agroecosyst 62:11–14. https://doi.org/10.1023/a:1015440906428

    Article  Google Scholar 

  • Nyagumbo I, Mkuhlani S, Pisa C, Kamalongo D, Dias D, Mekuria M (2016) Maize yield effects of conservation agriculture based maize-legume cropping systems in contrasting agro-ecologies of Malawi and Mozambique. Nutr Cycl Agroecosyst 105:275–290. https://doi.org/10.1007/s10705-015-9733-2

    Article  CAS  Google Scholar 

  • Oberson A, Frossard E, Buhlmann C, Mayer J, Mader P, Luscher A (2013) Nitrogen fixation and transfer in grass-clover leys under organic and conventional cropping systems. Plant Soil 371:237–255. https://doi.org/10.1007/S11104-013-1666-4

    Article  CAS  Google Scholar 

  • Ojiem J, Vanlauwe B, de Ridder N, Giller K (2007) Niche-based assessment of contributions of legumes to the nitrogen economy of western Kenya smallholder farms. Plant Soil 292:119–135. https://doi.org/10.1007/s11104-007-9207-7

    Article  CAS  Google Scholar 

  • Orr DM (2010) Managing the grass-legume balance in Stylosanthes Scabra cv. Seca pastures in central Queensland. Trop Grasslands 44:174–183

    Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Koppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Peoples MB, Bowman AM, Gault RR, Herridge DF, McCallum MH, McCormick KM, Norton RM, Rochester IJ, Scammell GJ, Schwenke GD (2001) Factors regulating the contributions of fixed nitrogen by pasture and crop legumes to different farming systems of eastern Australia. Plant Soil 228:29–41. https://doi.org/10.1023/a:1004799703040

    Article  CAS  Google Scholar 

  • Probert ME (1984) 10 - the mineral nutrition of Stylosanthes. In: Stace HM, Edye LA (eds) The biology and agronomy of Stylosanthes. Academic Press

  • Rasche F, Cadisch G (2013) The molecular microbial perspective of organic matter turnover and nutrient cycling in tropical agroecosystems - what do we know. Biol Fert Soils 49:251–262. https://doi.org/10.1007/S00374-013-0775-9

    Article  Google Scholar 

  • R-Core-Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rusinamhodzi L, Corbeels M, van Wijk MT, Rufino MC, Nyamangara J, Giller KE (2011) A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agron Sustain Dev 31:657–673. https://doi.org/10.1007/S13593-011-0040-2

    Article  Google Scholar 

  • Saito K, Azoma K, Oikeh SO (2010) Combined effects of Stylosanthes Guianensis fallow and tillage management on upland rice yield, weeds and soils in southern Benin. Soil Tillage Res 107:57–63. https://doi.org/10.1016/j.still.2010.03.001

    Article  Google Scholar 

  • Salas AM, Elliott ET, Westfall DG, Cole CV, Six J (2003) The role of particulate organic matter in phosphorus cycling. Soil Sci Soc Am J 67:181–189

    Article  CAS  Google Scholar 

  • Shearer G, Kohl DH (1986) N-2-fixation in field settings - estimations based on natural N-15 abundance. Aust J Plant Physiol 13:699–756

    CAS  Google Scholar 

  • Shelton HM, Humphreys LR (1975) Undersowing rice (oryza-sativa) with stylosanthes-guyanensis .2. delayed sowing time and crop variety. Exp Agric 11:97–101. https://doi.org/10.1017/S0014479700006530

    Article  Google Scholar 

  • Six J, Feller C, Denef K, Ogle SM, Moraes Sa JC, Albrecht A (2002) Soil organic matter, biota and aggregation in temperate and tropical soils - effects of no-tillage. Agronomie 22:755–775

    Article  Google Scholar 

  • Six J, Ogle SM, Jay breidt F, Conant RT, Mosier AR, Paustian K (2004) The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob Chang Biol 10:155–160. https://doi.org/10.1111/j.1529-8817.2003.00730.x

    Article  Google Scholar 

  • Szott LT, Palm CA, Davey CB (1994) Biomass and litter accumulation under managed and natural tropical fallows. For Ecol Manag 67:177–190. https://doi.org/10.1016/0378-1127(94)90015-9

    Article  Google Scholar 

  • Thierfelder C, Wall PC (2011) Reducing the risk of crop failure for smallholder farmers in Africa through the adoption of conservation agriculture. In: Bationo A, Waswa B, Okeyo JMM, Maina F, Kihara JM (eds) Innovations as key to the green revolution in Africa. Springer, Netherlands, pp 1269–1277

    Chapter  Google Scholar 

  • Thierfelder C, Cheesman S, Rusinamhodzi L (2013) Benefits and challenges of crop rotations in maize-based conservation agriculture (CA) cropping systems of southern Africa. Int J Agric Sustain 11:108–124. https://doi.org/10.1080/14735903.2012.703894

    Article  Google Scholar 

  • Thomas RJ, Asakawa NM (1993) Decomposition of leaf litter from tropical forage grasses and legumes. Soil Biol Biochem 25:1351–1361. https://doi.org/10.1016/0038-0717(93)90050-l

    Article  CAS  Google Scholar 

  • Thomas D, Sumberg JE (1995) A review of the evaluation and use of tropical forage legumes in sub-Saharan Africa. Agric Ecosyst Environ 54:151–163. https://doi.org/10.1016/0167-8809(95)00584-f

    Article  Google Scholar 

  • Tian G, Kang BT (1998) Effects of soil fertility and fertilizer application on biomass and chemical compositions of leguminous cover crops. Nutr Cycl Agroecosyst 51:231–238. https://doi.org/10.1023/A:1009785905386

    Article  Google Scholar 

  • Unkovich MJ, Pate JS (2000) An appraisal of recent field measurements of symbiotic N-2 fixation by annual legumes. Field Crop Res 65:211–228. https://doi.org/10.1016/S0378-4290(99)00088-X

    Article  Google Scholar 

  • Unkovich M, Herridge D, Peoples M, Cadisch G, Boddey B, Giller K (2008) Measuring plant-associated nitrogen fixation in agricultural systems

  • Unkovich MJ, Baldock J, Peoples MB (2010) Prospects and problems of simple linear models for estimating symbiotic N-2 fixation by crop and pasture legumes. Plant Soil 329:75–89. https://doi.org/10.1007/s11104-009-0136-5

    Article  CAS  Google Scholar 

  • Urquiaga S, Cadisch G, Alves BJR, Boddey RM, Giller KE (1998) Influence of decomposition of roots of tropical forage species on the availability of soil nitrogen. Soil Biol Biochem 30:2099–2106. https://doi.org/10.1016/s0038-0717(98)00086-8

    Article  CAS  Google Scholar 

  • Vallis I, Gardener CJ (1984) 18 - nitrogen inputs into agricultural systems by Stylosanthes. In: Stace HM, Edye LA (eds) The biology and agronomy of Stylosanthes. Academic Press

  • van Kessel C, Clough T, van Groenigen JW (2009) Dissolved organic nitrogen: an overlooked pathway of nitrogen loss from agricultural systems. J Environ Qual 38:393–401. https://doi.org/10.2134/Jeq2008.0277

    Article  PubMed  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) Microbial biomass measurements in Forest soils - the use of the chloroform fumigation incubation method in strongly acid soils. Soil Biol Biochem 19:697–702. https://doi.org/10.1016/0038-0717(87)90051-4

    Article  CAS  Google Scholar 

  • Vanlauwe B, Sanginga N, Merckx R (1998) Recovery of Leucaena and Dactyladenia residue Nitrogen-15 in alley cropping systems. Soil Sci Soc Am J 62:454–460. https://doi.org/10.2136/sssaj1998.03615995006200020023x

    Article  CAS  Google Scholar 

  • Wilcox R (2012) Introduction to robust estimation and hypothesis testing. Academic Press, San Diego

    Google Scholar 

  • WMO (2015) Climate in Africa: 2013. World Meteorological Organization (WMO), no. 1147, Geneva, Switzerland

  • WRB IWG (2014) World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. World soil resources reports, No. 106. FAO, Rome

  • Yoneyama T, Fujita K, Yoshida T, Matsumoto T, Kambayashi I, Yazaki J (1986) Variation in natural abundance of N-15 among plant-parts and in N-15-N-14 fractionation during N-2 fixation in the legume-rhizobia symbiotic system. Plant Cell Physiol 27:791–799

    Article  CAS  Google Scholar 

  • Yoshida S (1981) Fundamentals of rice crop science. International Rice Research Institute, Los Banos, Philippines

    Google Scholar 

  • Yuste JC, Penuelas J, Estiarte M, Garcia-Mas J, Mattana S, Ogaya R, Pujol M, Sardans J (2011) Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Global Change Biol 17:1475–1486. https://doi.org/10.1111/J.1365-2486.2010.02300.X

    Article  Google Scholar 

  • Zemek O (2016) In transition to conservation agriculture: nitrogen dynamics in a rice - Stylosanthes guinanesis crop rotation in the Midwest highlands of Madagascar. D-USYS, ETH, Zurich

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for funding from the Swiss National Science Foundation and the Swiss Agency for Development and Cooperation (Project no. IZ70Z0_131310/1). We acknowledge Adolphe Munyangabe (currently Department of Soil Sciences, FIBL, Switzerland) for lab assistance with sample preparation. Further, we warmly thank Agnès Nivotiana (FOFIFA, Antsirabe, Madagascar) for field trial maintenance and assistance with sample preparation. Appreciation is extended to Myles Stocki (University of Saskatchewan, Canada) for mass spectrometer measurements. Special thanks go to Gregor Meyer (Group of Plant Nutrition, ETH Zurich), for fieldwork assistance. The authors thank Prof. Lilia Rabeharisoa (LRI, Antananarivo, Madagascar) and Prof. Jacqueline Rakotondravelo (FOFIFA, Antananarivo, Madagascar) for their collaboration in project steering and provision of logistic support.

Author information

Authors and Affiliations

Authors

Contributions

OZ: Conception and design, fieldwork, laboratory analysis, data interpretation and analysis, manuscript writing; EF, AO, and ES: Conception and design, coordination, data interpretation and manuscript revision. All authors read and approved the final draft.

Corresponding author

Correspondence to O. Zemek.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: John A. Kirkegaard.

Electronic supplementary material

ESM 1

(DOCX 6242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemek, O., Frossard, E., Scopel, E. et al. The contribution of Stylosanthes guianensis to the nitrogen cycle in a low input legume-rice rotation under conservation agriculture. Plant Soil 425, 553–576 (2018). https://doi.org/10.1007/s11104-018-3602-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3602-0

Keywords

Navigation