Skip to main content
Log in

Fire effects on litter chemistry and early development of Eucalyptus globulus

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aim

Fires affect what happens to litter in ecosystems. Biological and chemical effects of burnt litter on plants are not as of yet fully understood. We aimed to assess the effects of heat-treated leaf litter on germination and seedling root growth of Eucalyptus globulus.

Methods

Litter from E. globulus, Acacia dealbata, Pinus pinaster, and Quercus suber was collected in Portugal, on Humic Cambisol, and heated between 25 °C and 600 °C. Those materials were then characterized by: 13C CPMAS NMR spectroscopy, proximate lignin and cellulose, and elemental analyses. Afterwards, they were used as substrate in bioassays with Eucalyptus seeds.

Results

Heating changed litter composition (P < 0.05), consistently across species: alkyl C, O-alkyl C, and methoxyl + N-alkyl C decreased more than 50%; and aromatic C increased more than 5-fold. Unheated and lightly heated litters inhibited germination and growth, with maximum inhibition by Quercus and Eucalyptus litters, down to 17% of the control (P < 0.05). Severely charred materials had neutral or stimulatory effects, up to 191% of the control (P < 0.05). These responses were associated with concentrations of dominant C types in litters (P < 0.05).

Conclusion

Litter charring, as it occurs during wildfires, is potentially critical for the success of E. globulus’s regeneration from seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AFN (2010) Inventário Florestal Nacional, Portugal Continental - IFN5 2005-2006. Relatório Final. Autoridade Florestal Nacional, Lisboa

  • Águas A, Ferreira A, Maia P, Fernandes PM, Roxo L, Keizer J, Silva JS, Rego FC, Moreira F (2014) Natural establishment of Eucalyptus globulus Labill. in burnt stands in Portugal. For Ecol Manag 323:47–56

    Article  Google Scholar 

  • Águas A, Larcombe MJ, Matias H, Deus E, Potts BM, Rego FC, Silva JS (2017) Understanding the naturalization of Eucalyptus globulus in Portugal: a comparison with Australian plantations. Eur J For Res 136:433–446

    Article  Google Scholar 

  • Aguilera N, Becerra J, Villasenor-Parada C, Lorenzo P, González L, Hernandez V (2015) Effects and identification of chemical compounds released from the invasive Acacia dealbata Link. Chem Ecol 31:479–493

    Article  CAS  Google Scholar 

  • Almendros G, Dorado J, González-Vila FJ, Blanco MJ, Lankes U (2000) 13C NMR assessment of decomposition patterns during composting of forest and shrub biomass. Soil Biol Biochem 32:793–804

    Article  CAS  Google Scholar 

  • Almendros G, Knicker H, González-Vila FJ (2003) Rearrangement of carbon and nitrogen forms in peat after progressive thermal oxidation as determined by solid-state 13C and 15N-NMR spectroscopy. Org Geochem 34:1559–1568

    Article  CAS  Google Scholar 

  • Alpert P (2006) The advantages and disadvantages of being introduced. Biol Invasion 8(7):1523–1534

  • Amri I, Hanana M, Gargouri S, Jamoussi B, Hamrouni L (2013) Comparative study of two coniferous species (Pinus pinaster Aiton and Cupressus sempervirens L. var. dupreziana A. Camus Silba) essential oils: chemical composition and biological activity. Chilean J Agric Res 73:259–266

    Article  Google Scholar 

  • Attiwill PM (1962) The effects of heat pre-treatment of soil on the growth of E. obliqua seedlings. In: 3rd General Conference of the Institute of Foresters of Australia, Melbourne, p 14

  • Attiwill PM, Adams MA (1993) Nutrient cycling in forests. New Phytol 124:561–582

    Article  CAS  Google Scholar 

  • Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558

    Article  CAS  PubMed  Google Scholar 

  • Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally, altered Pinus resinosa (red pine) wood. Org Geochem 33:1093–1109

    Article  CAS  Google Scholar 

  • Baldos OC, DeFrank J, Sakamoto, GS (2015) Germination response of dormant tanglehead (Heteropogon contortus) seeds to smoke-infused water and the smoke-associated stimulatory compounds, karrikinolide and cyanide. HortScience 50:(3)421–429

  • Basanta M, Díaz-Vizcaíno E, Casal M, Morey M (1989) Diversity measurements in shrubland communities of Galicia (NW Spain). Plant Ecol 82:105–112

    Article  Google Scholar 

  • Bazzaz FA (1979) The physiological ecology of plant succession. Annu Rev Ecol Syst 10:351–371

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate - a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  • Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JR, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339

  • Bonanomi G, Giannino F, Mazzoleni S (2005) Negative plant-soil feedback and species coexistence. Oikos 111:311–321

    Article  Google Scholar 

  • Bonanomi G, Sicurezza MG, Caporaso S, Esposito A, Mazzoleni S (2006) Phytotoxicity dynamics of decaying plant materials. New Phytol 169:571–578

    Article  CAS  PubMed  Google Scholar 

  • Bonanomi G, Incerti G, Barile E, Capodilupo M, Antignani V, Mingo A, Lanzotti V, Scala F, Mazzoleni S (2011) Phytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects: evidence from solid-state 13C NMR spectroscopy. New Phytol 191:1018–1030

    Article  CAS  PubMed  Google Scholar 

  • Bonanomi G, Ippolito F, Scala F (2015) A "black" future for plant pathology? Biochar as a new soil amendment for controlling plant diseases. J Plant Pathol 97:223–234

    Google Scholar 

  • Bonanomi G, Ippolito F, Senatore M, Cesarano G, Incerti G, Saracino A, Lanzotti V, Scala F, Mazzoleni S (2016) Water extracts of charred litter cause opposite effects on growth of plants and fungi. Soil Biol Biochem 92:133–141

    Article  CAS  Google Scholar 

  • Bond WJ, van Wilgen BW (2012) Fire and plants. Chapman & Hall, London

    Google Scholar 

  • Brands CM (2002) Kinetic modelling of the Maillard reaction between proteins and sugars. In: Department of Agrotechnology and Food Sciences. Wageningen University, Wageningen, p 127

  • Britto DT, Kronzucker HJ (2002) NH4 + toxicity in higher plants: a critical review. J Plant Physiol 159:567–584

    Article  CAS  Google Scholar 

  • Brodowski S, Rodionov A, Haumaier L, Glaser B, Amelung W (2005) Revised black carbon assessment using benzene polycarboxylic acids. Org Geochem 36(9):1299–1310

  • Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523

    Article  CAS  PubMed  Google Scholar 

  • Campos I, Abrantes N, Vidal T, Bastos AC, Gonçalves F, Keizer JJ (2012) Assessment of the toxicity of ash-loaded runoff from a recently burnt eucalypt plantation. Eur J For Res 131:1889–1903

    Article  Google Scholar 

  • Carballeira A, Reigosa MJ (1999) Effects of natural leachates of Acacia dealbata Link in Galicia (NW Spain). Bot Bull Acad Sin 40:87–92

    Google Scholar 

  • Cartenì F, Marasco A, Bonanomi G, Mazzoleni S, Rietkerk M, Giannino F (2012) Negative plant-soil feedback explaining ring formation in clonal plants. J Theor Biol 313:153–161

    Article  PubMed  Google Scholar 

  • Carvalho JS (1992) Algumas hipóteses de referência químico-atmosférica e alelopática na derioração do montado de sobro. In, 2° Encontro sobre montados de sobro e azinho. Universidade de Évora, Évora, pp 305–314

  • Catford JA, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15(1):22–40

  • Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10

    Article  PubMed  Google Scholar 

  • Chambers D, Attiwill P (1994) The ash-bed effect in Eucalyptus regnans forest: chemical, physical and microbiological changes in soil after heating or partial sterilisation. Aust J Bot 42:739–749

  • Chandler, C., Cheney, P., Thomas, P., Trabaud, L., Williams, D., 1983. Fire in forestry. Volume 1. Forest fire behavior and effects. Wiley, New York

  • Chou C-H, Muller CH (1972) Allelopathic mechanisms of Arctostaphylos glandulosa var. zacaensis. Am Midl Nat 88:324–347

  • Christensen NL, Muller CH (1975) Effects of fire on factors controlling plant growth in Adenostoma chaparral. Ecol Monogr 45:29–55

    Article  Google Scholar 

  • Christina M, Rouifed S, Puijalon S, Vallier F, Meiffren G, Bellvert F, Piola F (2015) Allelopathic effect of a native species on a major plant invader in Europe. The Science of Nature 102:12

  • Cummings JA, Parker IM, Gilbert GS (2012) Allelopathy: a tool for weed management in forest restoration. Plant Ecol 213:1975–1989

  • Czimczik CI, Preston CM, Schmidt MWI, Werner RA, Schulze ED (2002) Effects of charring on mass, organic carbon, and stable carbon isotope composition of wood. Org Geochem 33:1207–1223

    Article  CAS  Google Scholar 

  • DeBano LF (1981) Water repellent soils: a state-of-the-art. General technical report PSW-46. United States Department of Agriculture, Forest Service, Pacific Southwest Forest and range experiment station, Berkeley

  • DeBano LF, Krammes J (1966) Water repellent soils and their relation to wildfire temperatures. Hydrol Sci J 11:14–19

    Google Scholar 

  • del Moral R, Muller CH (1969) Fog drip - a mechanism of toxin transport from Eucalyptus globulus. Bull Torrey Bot Club 96:467–475

    Article  Google Scholar 

  • Doerr SH, Shakesby RA, Walsh RPD (2000) Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci Rev 51:33–65

    Article  Google Scholar 

  • Domínguez MT (1994) Influence of polyphenols in the litter decomposition of autochthonous (Quercus ilex L., Quercus suber L., Pinus pinea L., Cistus Ladanifer L., and Halimium halimifolium W. K.) and introduced species (Eucalyptus globulus Labill. and Eucalyptus calmadulensis D.) in the sowthwest of Spain. Acta Hortic 381:425–428

    Article  Google Scholar 

  • Downes KS, Light ME, Pošta M, Kohout L, van Staden J (2013) Comparison of germination responses of Anigozanthos flavidus (Haemodoraceae), Gyrostemon racemiger and Gyrostemon ramulosus (Gyrostemonaceae) to smokewater and the smoke-derived compounds karrikinolide (KAR1) and glyceronitrile. Ann Bot 111:489–497

  • Espinosa-García F (1996) Revisión sobre la alelopatía de Eucalyptus L'Herit. Bol Soc Bot Méx 58:55–74

    Google Scholar 

  • Evenari M (1949) Germination inhibitors. Bot Rev 15:153–194

    Article  Google Scholar 

  • Facelli JM, Pickett STA (1991) Plant litter: its dynamics and effects on plant community structure. Bot Rev 57:1–32

    Article  Google Scholar 

  • Faria JMR, Godinho S, Almeida MJR, Machado MS (1981) Estudo hidroclimatológico da região do Algarve. O Clima de Portugal 27:1–155

    Google Scholar 

  • Fernandes P, Antunes C, Pinho P, Máguas C, Correia O (2016) Natural regeneration of Pinus pinaster and Eucalyptus globulus from plantation into adjacent natural habitats. For Ecol Manag 378:91–102

    Article  Google Scholar 

  • Flematti GR, Merritt DJ, Piggott MJ, Trengove RD, Smith SM, Dixon KW, Ghisalberti EL (2011) Burning vegetation produces cyanohydrins that liberate cyanide and stimulate seed germination. Nat Commun 2:360

  • Flematti GR, Dixon KW, Smith SM (2015) What are karrikins and how were they ‘discovered’ by plants? BMC Biol 13:108

  • Florence RG (1996) Ecology and silviculture of eucalypt forests. CSIRO, Collingwood

    Google Scholar 

  • Florence RG, Crocker RL (1962) Analysis of blackbutt (Eucalyptus pilularis Sm.) seedling growth in a blackbutt forest soil. Ecology 43:670–679

    Article  Google Scholar 

  • Freitas JCC, Bonagamba TJ, Emmerich FG (1999) 13C high-resolution solid-state NMR study of peat carbonization. Energy Fuel 13:53–59

    Article  CAS  Google Scholar 

  • Gessner MO (2005) Proximate lignin and cellulose. In: Graça MAS, Bärlocher F, Gessner MO (eds) Methods to study litter decomposition. Springer, Dordrecht, pp 115–120

    Chapter  Google Scholar 

  • Gonçalves S, Franco J, Romano A (2008) Allelopathic effects of extracts from several plant species on seed germination and seedlings growth of Lactuca sativa L. In, 7th joint meeting of the Society for Medicinal Plant and Natural Product Research, Association Francophone pour l’Enseignement et la Recherche en Pharmacognosie, the American Society of Pharmacognosy, the Phytochemical Society of Europe, and Società Italiana di Fitochimica, Athens

  • González-Pérez JA, González-Vila FJ, Almendros G, Knicker H (2004) The effect of fire on soil organic matter - a review. Environ Int 30:855–870

    Article  PubMed  Google Scholar 

  • Guinto DF, Saffigna PG, Xu ZH, House APN, Perera MCS (1999) Soil nitrogen mineralisation and organic matter composition revealed by 13C NMR spectroscopy under repeated prescribed burning in eucalypt forests of south-east Queensland. Aust J Soil Res 37:123–135

    Article  Google Scholar 

  • Gundale MJ, DeLuca TH (2006) Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal. For Ecol Manag 231:86–93

  • Hallett SG (2006) Dislocation from coevolved relationships: a unifying theory for plant invasion and naturalization? Weed Sci 54:282–290

  • Haugland E, Brandsaeter LO (1996) Experiments on bioassay sensitivity in the study of allelopathy. J Chem Ecol 22:1845–1859

    Article  CAS  PubMed  Google Scholar 

  • Hille M, den Ouden J (2005) Charcoal and activated carbon as adsorbate of phytotoxic compounds - a comparative study. Oikos 108:202–207

    Article  CAS  Google Scholar 

  • Hillis WE (1966) Polyphenols in the leaves of Eucalyptus L'Herit.: a chemotaxonomic survey - I. An introduction and a study of the series Globulares. Phytochemistry 5:1075–1090

    Article  CAS  Google Scholar 

  • ICNF (2013) IFN6 – Áreas dos usos do solo e das espécies florestais de Portugal continental. Resultados preliminares. Instituto da Conservação da Natureza e das Florestas, Lisboa

    Google Scholar 

  • Inderjit, Dakshini KMM (1995) On laboratory bioassays in allelopathy. Bot Rev 61:28–44

  • Inderjit, Nilsen ET (2003) Bioassays and field studies for allelopathy in terrestrial plants: progress and problems. Crit Rev Plant Sci 22:221–238

    Article  Google Scholar 

  • Inderjit STR, Callaway RM, Pollock JL, Kaur J (2008) Allelopathy and plant invasions: traditional, congeneric, and bio-geographical approaches. Biol Invasions 10:875–890

    Article  Google Scholar 

  • Ingestad T, Lund A-B (1986) Theory and techniques for steady-state mineral nutrition and growth of plants. Scand J For Res 1:439–453

    Article  Google Scholar 

  • ISTA (2003) International rules for seed testing. International Seed Testing Association, Basseldorf

    Google Scholar 

  • Jacobs MR (1979) Eucalypts for planting. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Johnson J (1919) The influence of heated soils on seed germination and plant growth. Soil Sci 7:1–103

    Article  CAS  Google Scholar 

  • Keeley JE, Fotheringham C (2000) Role of fire in regeneration from seed. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities. CABI, Wallingford, pp 311–330

    Chapter  Google Scholar 

  • Keeley JE, Morton BA, Pedrosa A, Trotter P (1985) Role of allelopathy, heat and charred wood in the germination of chaparral herbs and suffrutescents. J Ecol 73:445–458

    Article  Google Scholar 

  • Keeley JE, Pausas JG, Rundel PW, Bond WJ, Bradstock RA (2011) Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci 16:406–411

  • Kirkpatrick JB (1975) Natural distribution of Eucalyptus globulus Labill. Aust Geogr 13:22–35

    Article  Google Scholar 

  • Knicker H (2007) How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85:91–118

    Article  CAS  Google Scholar 

  • Knicker H, González-Vila FJ, Polvillo O, González JA, Almendros G (2005) Fire-induced transformation of C- and N-forms in different organic soil fractions from a dystric Cambisol under a Mediterranean pine forest (Pinus pinaster). Soil Biol Biochem 37:701–718

    Article  CAS  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  Google Scholar 

  • Kochanek J, Long RL, Lisle AT, Flematti GR (2016) Karrikins identified in biochars indicate post-fire chemical cues can influence community diversity and plant development. PLOS ONE 11, e0161234

  • Kopp E, Sobral M, Soares T, Woerner M (1989) Os solos do Algarve e as suas características: vista geral. Ministério da Agricultura, Pescas e Alimentação, Direcção Regional de Agricultura do Algarve, Sociedade Alemã de Cooperação Técnica, Lisboa, Faro, Eschborn

  • Larcombe MJ, Silva JS, Vaillancourt RE, Potts BM (2013) Assessing the invasive potential of Eucalyptus globulus in Australia: quantification of wildling establishment from plantations. Biol Invasions 15:2763–2781

    Article  Google Scholar 

  • Leather GR, Einhellig FA (1988) Bioassay of naturally occurring allelochemicals for phytotoxicity. J Chem Ecol 14:1821–1828

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Li H, Madden JL, Potts BM (1997) Variation in leaf waxes of the Tasmanian Eucalyptus species. 1. Subgenus Symphyomyrtus. Biochem Syst Ecol 25:631–657

  • Lorenzo P, Pazos-Malvido E, González L, Reigosa MJ (2008) Allelopathic interference of invasive Acacia dealbata: physiological effects. Allelopath J 22:453–462

    Google Scholar 

  • Lorenzo P, González L, Reigosa MJ (2010) The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe. Ann For Sci 67(1):101

  • Lotina-Hennsen B, King-Diaz B, Aguilar MI, Terrones MGH (2006) Plant secondary metabolites. Targets and mechanisms of allelopathy. In: Reigosa MJ, Pedrol N, González L (Eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht, pp 229–265

  • Loydi A, Donath TW, Eckstein RL, Otte A (2015) Non-native species litter reduces germination and growth of resident forbs and grasses: allelopathic, osmotic or mechanical effects? Biol Invasions 17:581–595

    Article  Google Scholar 

  • Macías FA, Castellano D, Molinillo JMG (2000) Search for a standard phytotoxic bioassay for allelochemicals. Selection of standard target species. J Agric Food Chem 48:2512–2521

    Article  PubMed  Google Scholar 

  • May FE, Ash JE (1990) An assessment of the allelopathic potential of Eucalyptus. Aust J Bot 38:245–254

    Article  Google Scholar 

  • Mazzoleni S, Bonanomi G, Incerti G, Chiusano ML, Termolino P, Mingo A, Senatore M, Giannino F, Carteni F, Rietkerk M, Lanzotti V (2015) Inhibitory and toxic effects of extracellular self-DNA in litter: a mechanism for negative plant-soil feedbacks? New Phytol 205:1195–1210

    Article  CAS  PubMed  Google Scholar 

  • McPherson JK, Muller CH (1969) Allelopathic effects of Adenostoma fasciculatum,"chamise", in the California chaparral. Ecol Monogr 39:177–198

    Article  Google Scholar 

  • Meiners SJ, Kong C-H, Ladwig LM, Pisula NL, Lang KA (2012) Developing an ecological context for allelopathy. Plant Ecol 213:1221–1227

    Article  Google Scholar 

  • Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, Maron JL, Morris WF, Parker IM, Power AG, Seabloom EW, Torchin ME, Vázquez DP (2006) Biotic interactions and plant invasions. Ecol Lett 9:726–740

  • Molina A, Reigosa MJ, Carballeira A (1991) Release of allelochemical agents from litter, throughfall, and topsoil in plantations of Eucalyptus globulus Labill. in Spain. J Chem Ecol 17:147–160

    Article  CAS  PubMed  Google Scholar 

  • Mount AB (1964) The interdependence of the eucalypts and forest fires in southern Australia. Aust For 28:166–172

    Article  Google Scholar 

  • Mount AB (1969) Eucalypt ecology as related to fire. In Proceedings of Tall Timbers Fire Ecology Conference, pp 75–108

  • Muller CH, Hanawalt RB, McPherson JK (1968) Allelopathic control of herb growth in the fire cycle of California chaparral. Bull Torrey Bot Club 95:225–231

    Article  Google Scholar 

  • Muscolo A, Sidari M, Panuccio MR, De Santis C, Finocchiaro A (2005) Early effects of phenolic compounds, extracted from two forest litters, on ammonium uptake and assimilation in Pinus laricio and Pinus pinaster seedlings. Plant Soil 269:309–320

    Article  CAS  Google Scholar 

  • Naveh Z (1974) Effects of fire in the Mediterranean region. In: Kozlowski TT, Ahlgren CE (eds) Fire and ecosystems. Academic Press, New York, pp 401–434

    Chapter  Google Scholar 

  • Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79:667–677

    Article  Google Scholar 

  • Nelson DC, Flematti GR, Ghisalberti EL, Dixon K, Smith SM (2012) Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu Rev Plant Biol 63:107–130

    Article  CAS  PubMed  Google Scholar 

  • Ning L, Yu F-H, van Kleunen M (2016) Allelopathy of a native grassland community as a potential mechanism of resistance against invasion by introduced plants. Biol Invasion 18:3481–3493

  • Pausas JG, Keeley JE (2014) Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytol 204:55–65

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Perez FJ (1990) Allelopathic effect of hydroxamic acids from cereals on Avena sativa and A. fatua. Phytochemistry 29:773–776

    Article  CAS  Google Scholar 

  • Podani J (2000) Introduction to the exploration of multivariate biological data. Backhuys, Leiden

    Google Scholar 

  • Preston CM, Nault JR, Trofymow JA (2009) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. C abundance, solid-state 13C NMR spectroscopy and the meaning of "lignin". Ecosystems 12:1078–1102

    Article  CAS  Google Scholar 

  • Pyne SJ, Andrews PL, Laven RD (1996) Introduction to wildland fire. Wiley, New york

    Google Scholar 

  • Rabotnov TA (1974) On the allelopathy in the phytocoenoses. Izvestiya Akademii Nauk SSSR - Seriya Biologicheskaya 6:811–819

  • Raison RJ (1979) Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations - review. Plant Soil 51:73–108

    Article  CAS  Google Scholar 

  • Razanamandranto S, Tigabu M, Sawadogo L, Oden PC (2005) Seed germination of eight savanna-woodland species from West Africa in response to different cold smoke treatments. Seed Sci Technol 33:315–328

    Article  Google Scholar 

  • Reichman SM (2002) The responses of plants to metal toxicity: a review focusing on copper, manganese and zinc. Australian Minerals & Energy Environment Foundation, Melbourne

    Google Scholar 

  • Reigosa MJ, Pedrol N, González L (Eds) (2006) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht

  • Rejmánek M, Richardson DM (2011) Eucalypts. In: Simberloff D, Rejmánek M (eds) Encyclopedia of biological invasions. University of California Press, Berkeley, pp 203–209

    Google Scholar 

  • Reyes O, Kaal J, Arán D, Gago R, Bernal J, García-Duro J, Basanta M (2015) The effects of ash and black carbon (biochar) on germination of different tree species. Fire Ecol 11:119–133

    Article  Google Scholar 

  • Rice EL (1984) Allelopathy. Academic Press, London

    Google Scholar 

  • Rock NMS (1983) Alguns aspectos geológicos, petrológicos e geoquímicos do complexo eruptivo de Monchique. Comunicações dos Serviços Geológicos de Portugal 69:325–372

    CAS  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O'Neil P, Parker IM, Thompson JN, Welle SG (2001) The population biology of invasive species. Annu Rev Ecol Evol Syst 32:305–332

  • Savage SM (1974) Mechanism of fire-induced water repellency in soil. Soil Sci Soc Am J 38:652–657

    Article  CAS  Google Scholar 

  • Schlesinger WH (1977) Carbon balance in terrestrial detritus. Annu Rev Ecol Syst 8:51–81

    Article  CAS  Google Scholar 

  • Silva JS, Moreira F, Vaz P, Catry F, Godinho-Ferreira P (2009) Assessing the relative fire proneness of different forest types in Portugal. Plant Biosyst 143:597–608

    Article  Google Scholar 

  • Singh HP, Batish DR, Kohli RK (1999) Autotoxicity: concept, organisms, and ecological significance. Crit Rev Plant Sci 18:757–772

    Article  CAS  Google Scholar 

  • Souto XC, González L, Reigosa MJ (1994) Comparative analysis of allelopathic effects produced by 4 forestry species during decomposition process in their soils in Galicia (NW Spain). J Chem Ecol 20:3005–3015

    Article  CAS  PubMed  Google Scholar 

  • Souto XC, Bolano JC, González L, Reigosa MJ (2001) Allelopathic effects of tree species on some soil microbial populations and herbaceous plants. Biol Plant 44:269–275

    Article  Google Scholar 

  • Stinchcombe JR, Schmitt J (2006) Ecosystem engineers as selective agents: the effects of leaf litter on emergence time and early growth in Impatiens capensis. Ecol Lett 9:258–270

    Article  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology. Sinauer, Sunderland

    Google Scholar 

  • Tinoco P, Almendros G, González-Vila FJ, Lankes U, Lüdemann H-D (2004) Analysis of carbon and nitrogen forms in soil fractions after the addition of 15N-compost by 13C and 15N nuclear magnetic resonance. J Agric Food Chem 52:5412–5417

  • Wardle DA, Zackrisson O, Nilsson MC (1998) The charcoal effect in boreal forests: mechanisms and ecological consequences. Oecologia 115:419–426

    Article  CAS  PubMed  Google Scholar 

  • Willis RJ (1985) The historical bases of the concept of allelopathy. J Hist Biol 18:71–102

    Article  Google Scholar 

  • Willis R (1999) Australian studies on allelopathy in Eucalyptus: a review. In: Inderjit, Dakshini KMM, Foy CL (Eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, p 201–219

  • Wilkinson G, Battaglia M, Mount T (1993) Silvicultural use and effects of fire. Forestry Comission of Tasmania, Hobart

Download references

Acknowledgements

We thank Anthony B. Mount for his insightful ideas. His seminal work on the concept of plant wastes and on their ecology was inspiring for our study. We also thank Ana M. Águas and Helder Águas for helping in field trips; as well as Clara Ferino, Gianluca Mazzei, Virginio Mazzei, Gaspare Cesarano, Salvatore Gaglione, and Tushar Sarker for helping in the laboratory in the two busiest days; and Iryna Skulska for the translation from Russian. Finally we thank two anonymous reviewers for their comments. The 13C-CPMAS NMR measurements were performed at the CERMANU-Interdepartmental Research Centre, University of Naples Federico II. The elemental analyses were done at the Laboratório de Plantas e Solos of the Universidade de Trás-os-Montes e Alto-Douro. Ana Águas had a PhD scholarship from Fundação para a Ciência e Tecnologia (SFRH/BD/76899/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Águas.

Additional information

Responsible Editor: Jeffrey Walck

Electronic supplementary material

ESM 1

(DOCX 211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Águas, A., Incerti, G., Saracino, A. et al. Fire effects on litter chemistry and early development of Eucalyptus globulus . Plant Soil 422, 495–514 (2018). https://doi.org/10.1007/s11104-017-3419-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3419-2

Keywords

Navigation