Skip to main content

Advertisement

Log in

Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aim

Most of the food grains show deficiency of zinc. The study was carried out to evaluate the role of endophytes in the fortification of Zn in wheat genotypes with different nutrient use efficiency and in soils deficient and sufficient for Zn.

Methods

Two zinc solubilizing endophytes (Bacillus subtilis DS-178 and Arthrobacter sp. DS-179) were used to inoculate low and high Zn accumulating genotypes in soils sufficient and deficient in Zn.

Results

The data on different root morphological parameters, yield and accumulation of Zn indicated distinct variations among genotypes; soil types and also among the endophytes inoculated, un-inoculated and chemical fertilizer treatments. In general, the amount of Zn in grains due to inoculation of endophytes was 2 folds higher as compared to un-inoculated control. The low and high Zn accumulating genotypes responded in an almost identical manner to endophyte inoculation, irrespective of the soil types.

Conclusion

Zn solubilizing endophytes can enhance the translocation and enrichment of Zn to grains in wheat genotypes, irrespective of their different nutrient use efficiency (Zn). This approach can be integrated into the modern strategies for biofortification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abaid-Ullah M, Hassan MN, Jamil M, Brader G, Shah MKN, Sessitsch A, Hafeez FY (2015) Plant growth promoting rhizobacteria: an alternate way to improve yield and quality of wheat (Triticum aestivum). Int J Agric Biol 17:51–60

    Google Scholar 

  • Abbamondi GR, Tommonaro G, Weyens N, Thijs S, Sillen W, Gkorezis P, Iodice C, Rangel WM, Nicolaus B, Vangronsveld J (2016) Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem Biol Technol Agri 3:1

    Article  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B, Meenakshi J, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32:S31–S40

    Article  PubMed  Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010) Review: biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20

    Article  CAS  Google Scholar 

  • Chatzistathis T, Therios I, Alifragis D (2009) Differential uptake, distribution within tissues, and use efficiency of manganese, iron, and zinc by olive cultivars kothreiki and koroneiki. Hortic Sci 44(7):1994–1999

    Google Scholar 

  • Chen B, Shen J, Zhang X, Pan F, Yang X, Feng Y (2014) The endophytic bacterium, Sphingomonas SaMR12, improves the potential for zinc phytoremediation by its host, Sedum alfredii. PLoS One 9(9):e106826

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa C, Dwyer LM, Hamilton RI, Hamel C, Nantais L, Smith DL (2000) A sampling method for measurement of large root systems with scanner-based image analysis. Agron J 92:621–627

    Article  Google Scholar 

  • De La Torre-Ruiz N, Ruiz-Valdiviezo VM, Rincón-Molina CI, Rodríguez-Mendiola M, Arias-Castro C, Gutiérrez-Miceli FA, Palomeque-Dominguez H, Rincón-Rosales R (2016) Effect of plant growth-promoting bacteria on the growth and fructan production of Agave americana L. Braz J Microbiol 47(3):587–596

    Article  PubMed  PubMed Central  Google Scholar 

  • Derkowska E, Paszt LS, Harbuzov A, Sumorok B (2015) Root growth, Mycorrhizal frequency and soil microorganisms in strawberry as affected by Biopreparations. Adv Microbiol 5:65

    Article  Google Scholar 

  • Dong B, Rengel Z, Graham RD (1995) Root morphology of wheat genotypes differing in zinc efficiency. J Plant Nutr 18:2761–2773

    Article  CAS  Google Scholar 

  • Durán P, Acuña J, Jorquera M, Azcón R, Paredes C, Rengel Z, de la Luz MM (2014) Endophytic bacteria from selenium supplemented wheat plants could be useful for plant growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production. Biol Fertil Soils 50(6):983–990

    Article  Google Scholar 

  • Farinati S, DalCorso G, Panigati M, Furini A (2011) Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation. J Exp Bot 62:34333447

    Article  Google Scholar 

  • Genc Y, Huang CY, Langridge P (2007) A study of the role of root morphological traits in growth of barley in zinc-deficient soil. J Exp Bot 58:2775–2784

    Article  CAS  PubMed  Google Scholar 

  • Gosal S, Karlupia A, Gosal S, Chhibba I, Varma A (2010) Biotization with Piriformospora indica and Pseudomonas fluorescens improves survival rate, nutrient acquisition, field performance and saponin content of micropropagated Chlorophytum sp. Indian J Biotechnol 9(3):289–297

  • Goudjal Y, Toumatia O, Yekkour A, Sabaou N, Mathieu F, Zitouni A (2014) Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Microbiol Res 169:59–65

    Article  CAS  PubMed  Google Scholar 

  • Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    Article  PubMed  Google Scholar 

  • Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65:547–570

    Article  CAS  PubMed  Google Scholar 

  • Jackson M (1965) Soil chemical analysis. Constable, Ltd. Co., London, p 498

    Google Scholar 

  • James D, Mathew S (2015) Antagonistic activity of endophytic microorganisms against bacterial wilt disease of tomato. Int J Curr Adv Res 4:399–404

    Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Lockhart K, King A, Harter T (2013) Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production. J Contam Hydrol 151:140–154

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP (2007) Turner review no. 14. Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Melnick RL, Suárez C, Bailey BA, Backman PA (2011) Isolation of endophytic endospore-forming bacteria from Theobroma cacao as potential biological control agents of Cacao diseases. Biol Control 57:236–245

    Article  Google Scholar 

  • Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39

    Article  CAS  Google Scholar 

  • Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Dep Agric Circ 939

  • Prasanna R, Bidyarani N, Babu S, Hossain F, Shivay YS, Nain L (2015) Cyanobacterial inoculation elicits plant defense response and enhanced Zn mobilization in maize hybrids. Cogent Food Agric 1:995807

    Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    Article  CAS  Google Scholar 

  • Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68:2261–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren X, Zhang N, Cao M, Wu K, Shen Q, Huang Q (2012) Biological control of tobacco black shank and colonization of tobacco roots by a Paenibacillus polymyxa strain C5. Biol Fertil Soils 48:613–620

    Article  Google Scholar 

  • Rengel Z (2001) Genotypic differences in micronutrient use efficiency in crops. Commun Soil Sci Plant Anal 32:1163–1186

    Article  CAS  Google Scholar 

  • Römheld V, Marschner H (1991) Function of micronutrients in plants. ln JJ Mortvedt, FR Cox, LM Shuman, RM Welch, eds, Micronutrients in Agriculture, Ed 2. Soil Science Society of America, Madison, Wl, pp 297–328

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, Sharma MP, Ramesh A, Joshi OP (2012) Characterization of zinc-solubilizing Bacillus isolates and their potential to influence zinc assimilation in soybean seeds. J Microbiol Biotechnol 22:352–359

    Article  CAS  PubMed  Google Scholar 

  • Singh D (2016) Enhancement of uptake and translocation of micronutrients in wheat by using endophytes. Ph.D. thesis, IARI Post Graduate Schol, New Delhi

    Google Scholar 

  • Singh B, Natesan SKA, Singh B, Usha K (2005) Improving zinc efficiency of cereals under zinc deficiency. Curr Sci 88:36–44

    CAS  Google Scholar 

  • Standfold S, English L (1949) Use of flame photometer in rapid soil test for K and Ca. Agron J 41:446–447

    Google Scholar 

  • Subbiah B, Asija G (1956) A rapid procedure for the estimation of available nitrogen in soils. Curr Sci 25:259–260

    CAS  Google Scholar 

  • Sura-de Jong M, Reynolds RJ, Richterova K, Musilova L, Staicu LC, Chocholata I, Cappa JJ, Taghavi S, van der Lelie D, Frantik T (2015) Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties. Front Plant Sci 6(113):1–17

    Google Scholar 

  • Tariq M, Hameed S, Malik KA, Hafeez FY (2007) Plant root associated bacteria for zinc mobilization in rice. Pak J Bot 39:245

    Google Scholar 

  • Velu G, Ortiz-Monasterio I, Cakmak I, Hao Y, Singh RP (2014) Biofortification strategies to increase grain zinc and iron concentrations in wheat. J Cereal Sci 59(3):365–372

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38

    Article  CAS  Google Scholar 

  • Wang Y, Yang X, Zhang X, Dong L, Zhang J, Wei Y, Feng Y, Lu L (2014) Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn hyperaccumulator, Sedum alfredii H. J Agric Food Chem 62:1783–1791

    Article  CAS  PubMed  Google Scholar 

  • Welch RM, Shuman L (1995) Micronutrient nutrition of plants. Crit Rev Plant Sci 14:49–82

    Article  CAS  Google Scholar 

  • Weyens N, Beckers B, Schellingen K, Ceulemans R, Croes S, Janssen J, Haenen S, Witters N, Vangronsveld J (2013) Plant-associated bacteria and their role in the success or failure of metal phytoextraction projects: first observations of a field-related experiment. Microb Biotechnol 6(3):288–299

    Article  PubMed  PubMed Central  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Ma B (2015) Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: a review. Sci Total Environ 512:415–427

    Article  PubMed  Google Scholar 

  • Xiaohong T, Xinchun L, Wenxuan M, Xiwen Y, Shengxiu L (2008) Effect of calcium carbonate content on availability of zinc in soil and zinc and iron uptake by wheat plants. Soils 40(3):425–431

    Google Scholar 

  • Zhang X, Lin L, Chen M, Zhu Z, Yang W, Chen B, Yang X, An Q (2012) A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance. J Hazard Mater 229:361–370

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to ICAR-Indian Agricultural Research Institute and Indian Council of Agricultural Research (ICAR), New Delhi through National Agricultural Science Fund (NASF) to provide financial support and facilities required for present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Saxena.

Additional information

Responsible Editor: Philip John White.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Rajawat, M.V.S., Kaushik, R. et al. Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn. Plant Soil 416, 107–116 (2017). https://doi.org/10.1007/s11104-017-3189-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3189-x

Keywords

Navigation