Skip to main content

Advertisement

Log in

Arbuscular mycorrhizal fungus colonization in Nicotiana tabacum decreases the rate of both carboxylate exudation and root respiration and increases plant growth under phosphorus limitation

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Under phosphorus (P) limitation, plants tend to maximize their efficiency of P acquisition by increasing the exudation of root carboxylates, such as citrate, whose synthesis is mediated by respiration via the alternative oxidase (AOX) in cluster roots. However, high respiratory costs related to nutrient uptake are associated with slower plant growth, whereas arbuscular mycorrhizal (AM) fungus colonization increases plant growth and decreases the exudation of citrate and malate. Thus, the present research is based on the hypothesis that AM fungus colonization will decrease root respiration via the alternative pathway and the amount of carboxylates in the rhizosphere, and increase plant growth.

Methods

We used the oxygen-isotope-fractionation technique to study the in vivo respiratory activities of the cytochrome and the alternative oxidase pathways (COP and AOP) in AM and nonmycorrhizal (NM) tobacco plants grown under P-sufficient (0.25 mM) and P-limiting (0.025 mM) conditions in sand. The amount of root exudates in the rhizosphere, total biomass and root P content were determined.

Results

Under sufficient P, the amount of citrate and malate was higher in NM plants, while no differences were found in respiration between NM and AM plants. On the other hand, low P increases the exudation of citrate and respiration via AOP in NM plants, while it does not affect the amount of carboxylates, nor the respiratory rate in AM plants. Biomass production was reduced only in NM plants under low P.

Conclusions

Our results highlight that AM fungus colonization decreases the rate of root respiration and the exudation of citrate and malate, whilst increasing plant growth. Conversely, respiration, via AOX, is associated with the exudation of citrate and less biomass production in NM roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

AOX:

Alternative oxidase

AOP:

Alternative oxidase pathway

v alt :

Alternative pathway activity

AM:

Arbuscular mycorrhiza

AMF:

Arbuscular mycorrhizal fungi

Valt :

Capacity of the alternative pathway

COX:

Cytochrome oxidase

COP:

Cytochrome oxidase pathway

v cyt :

Cytochrome pathway activity

NM:

Non- Arbuscular mycorrhiza

Vt :

Total respiration

TCA:

Tricarboxylic acid cycle

References

  • Abbott LK, Robson AD (1984) The effect of vesicular-arbuscular mycorrhizas on plant growth. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhizas. CRC Uniscience Series, CRC Press, Florida

    Google Scholar 

  • Atkin OK, Sherlock D, Fitter A, Jarvis S, Hughes J, Campbell C, Hurry V, Hodge A (2009) Temperature dependence of respiration in roots colonized by arbuscular mycorrhizal fungi. New Phytol 182:188–199

    Article  CAS  PubMed  Google Scholar 

  • Baas R, van der Werf A, Lambers H (1989) Root respiration and growth in Plantago major as affected by vesicular-arbuscular mycorrhizal infection. Plant Physiol 91:227–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular–arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Article  Google Scholar 

  • Bryla DR, Eissenstat DM (2005) Respiratory costs of mycorrhizal associations. In: Lambers H, Ribas-Carbo M (eds) Plant Respiration: from cell to ecosystem. Advances in photosynthesis and respiration series, vol 18. Springer-Verlag, New York, pp 207–224

    Chapter  Google Scholar 

  • Cawthray GR (2003) An improved reversed-phase liquid chromatographic method for the analysis of low-molecular mass organic acids in plant root exudates. J Chromatogr A 1011:233–240

    Article  CAS  PubMed  Google Scholar 

  • Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change 19:292–305

    Article  Google Scholar 

  • Day DA, Krab K, Lambers H, Moore AL, Siedow JN, Wagner AM, Wiskich JT (1996) The cyanide-resistant oxidase: to inhibit or not to inhibit, that is the question. Plant Physiol 110:1–2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del-Saz NF, Florez-Sarasa I, Clemente-Moreno MJ, Mhadhbi H, Flexas J, Fernie AR, Ribas-Carbó M (2016) Salinity tolerance is related to cyanide-resistant alternative respiration in Medicago truncatula under sudden severe stress. Plant Cell Environ. doi:10.1111/pce.12776

    PubMed  Google Scholar 

  • Epstein E (1972) Mineral nutrition of plants: principles and perspectives. John Wiley and Sons, New York, p 39

    Google Scholar 

  • Fay P, Mitchell DT, Osborne BA (1996) Photosynthesis and nutrient-use efficiency of barley in response to low arbuscular mycorrhizal colonization and addition of phosphorus. New Phytol 132:425–433

    Article  CAS  PubMed  Google Scholar 

  • Florez-Sarasa I, Flexas J, Rasmusson AG, Umbach AL, Siedow JN, Ribas-Carbó M (2011) In vivo cytochrome and alternative pathway respiration in leaves of Arabidopsis thaliana plants with altered alternative oxidase under different light conditions. Plant Cell Environ 34:1373–1383

    Article  CAS  PubMed  Google Scholar 

  • Florez-Sarasa ID, Lambers HG, Wang X, Finnegan PM, Ribas-Carbó M (2014) The alternative respiratory pathway mediates carboxylate synthesis in white lupin cluster roots under phosphorus deprivation. Plant Cell Environ 37:922–928

    Article  CAS  PubMed  Google Scholar 

  • Funayama-Noguchi S, Noguchi K, Terashima I (2015) Comparison of the response to phosphorus deficiency in two lupin species, Lupinus albus and L. angustifolius, with contrasting root morphology. Plant Cell Environ 38:399–410

    Article  CAS  PubMed  Google Scholar 

  • Gaston S, Ribas-Carbó M, Busquets S, Berry JA, Zabalza A, Royuela M (2003) Changes in mitochondrial electron partitioning in response to herbicides inhibiting branched-chain amino acid biosynthesis in soybean. Plant Physiol 133:1351–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert N (2009) Environment: the disappearing nutrient. Nature 461:716–718

    Article  CAS  PubMed  Google Scholar 

  • Grace EJ, Smith FA, Smith SE (2008) Deciphering the arbuscular mycorrhizal pathway of P uptake in nonresponsive hosts. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas: functional processes and ecological impact. Springer, Berlin, pp 89–106

    Google Scholar 

  • Gupta KJ, Shah JK, Brotman Y, Jahnke K, Willmitzer L, Kaiser WM, Bauwe H, Igamberdiev AU (2012) Inhibition of aconitase by nitric oxide leads to induction of alternative oxidase and to a shift of metabolism towards biosynthesis of amino acids. J Exp Bot 63:1773–1784

    Article  CAS  PubMed  Google Scholar 

  • Hoefnagel MHN, Van Iren F, Libbenga KR, van der Plas LHW (1994) Possible role of adenylates in the engagement of the cyanide-resistant pathway in nutrient-starved Catharanthus roseus cells. Physiol Plant 90:269–278

    Article  CAS  Google Scholar 

  • Hughes JK, Hodge A, Fitter AH, Atkin OK (2008) Mycorrhizal respiration: implications for global scaling relationships. Trends Plant Sci 13:583–588

    Article  CAS  PubMed  Google Scholar 

  • Israel DW (1987) Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol 84:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juszczuk IM, Malusa E, Rychter AM (2001) Oxidative stress during phosphate deficiency in roots of bean plants (Phaseolus vulgaris L.). J Plant Physiol 158:1299–1305

    Article  CAS  Google Scholar 

  • Kania A, Neumann G, Cesco S, Pinton R, Römheld V (2002) Use of plasma membrane vesicles for examination of phosphorus deficiency induced root excretion of citrate in cluster roots of white lupin (Lupinus albus L.). In: Horst WJ et al (eds) Plant nutrition – food security and sustainability of agro- ecosystems. Kluwer Academic Publishers, Dordrecht, pp 546–547

    Google Scholar 

  • Lambers H, Plaxton WC (2015) Phosphorus: back to the roots. In: Plaxton WC, Lambers H (eds) Annual plant reviews volume 48: phosphorus metabolism in plants. John Wiley & Sons Inc, Hoboken. doi:10.1002/9781118958841.ch1

    Google Scholar 

  • Lambers H, Juniper D, Cawthray GR, Veneklaas EJ, Martinez-Ferri E (2002) The pattern of carboxylate exudation in Banksia grandis (Proteaceae) is affected by the form of phosphate added to the soil. Plant Soil 238:111–122

    Article  CAS  Google Scholar 

  • Lambers H, Robinson SA, Ribas-Carbó M (2005) Regulation of respiration in vivo. In: Lambers H, Ribas-Carbó M (eds) Plant respiration: from cell to ecosystem. Advances in photosynthesis and respiration series, vol 18. Springer, Dordrecht, pp 1–15

    Chapter  Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2008) Plant Physiological Ecology. Springer-Verlag, New York, pp 10–95

    Book  Google Scholar 

  • Laparre J, Malbreil M, Letisse F, Portais JC, Roux C, Becard G, Puech-Pagès V (2014) Combining metabolomics and gene expression analysis reveals that propionyland butyryl-carnitines are involved in late stages of arbuscular mycorrhizal symbiosis. Mol Plant 7:554–566

    Article  CAS  PubMed  Google Scholar 

  • López-Bucio J, Nieto-Jacobo MF, Ramírez-Rodríguez V, Herrera-Estrella L (2000) Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci 160:1–13

    Article  PubMed  Google Scholar 

  • Lü J, Gao X, Dong Z, Lijia A (2012) Improved phosphorus acquisition by tobacco through transgenic expression of mitochondrial malate dehydrogenase from Penicillium oxalicum. Plant Cell Rep 31:49

    Article  PubMed  Google Scholar 

  • Marschner H (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, London

    Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    Article  CAS  Google Scholar 

  • Massonneau A, Langlade N, Leon S, Smutny J, Vogt E, Neumann G, Martinonia E (2001) Metabolic changes associated with cluster root development in white lupin (Lupinus albus L.): relationship between organic acid excretion, sucrose metabolism and energy status. Planta 213:534–542

    Article  CAS  PubMed  Google Scholar 

  • Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M (2009) Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol 181:950–959

    Article  CAS  PubMed  Google Scholar 

  • Nazeri NK, Lambers H, Tibbett M, Ryan MH (2013) Moderating mycorrhizas: arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries. Plant Cell Environ 37:911–921

    Article  PubMed  Google Scholar 

  • Nielsen KL, Bouma TJ, Lynch JP, Eissenstat DM (1998) Effects of phosphorus availability and vesicular-arbuscular mycorrhizas on the carbon budget of common bean (Phaseolus vulgaris). New Phytol 139:647–656

    Article  Google Scholar 

  • Nielsen KL, Eshel A, Lynch JP (2001) The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. J Exp Bot 52:329–339

    CAS  PubMed  Google Scholar 

  • Otgonsuren B, Rewald B, Godbold DL, Göransson H (2016) Ectomycorrhizal inoculation of Populus nigra modifies the response of absorptive root respiration and root surface enzyme activity to salinity stress. Flora 224:123

    Article  Google Scholar 

  • Pang PC, Paul EA (1980) Effects of vesicular-arbuscular mycorrhiza on 14C and 15N distribution in nodulated fababeans. Can J Soil Sci 60:241–250

    Article  CAS  Google Scholar 

  • Paradi I, Bratek Z, Lang F (2003) Influence of arbuscular mycorrhiza and phosphorus supply on polyamine content, growth and photosynthesis of Plantago lanceolata. Biol plantarum 46:563–569

    Article  CAS  Google Scholar 

  • Parsons HL, Yip JYH, Vanlerberghe GC (1999) Increased respiratory restriction during phosphate-limited growth in transgenic tobacco cells lacking alternative oxidase. Plant Physiol 121:1309–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearse SJ, Veneklaas EJ, Cawthray GR, Bolland MDA, Lambers H (2007) Carboxylate composition of root exudates does not relate consistently to a crop species ability to use phosphorus from aluminium, iron or calcium phosphate sources. New Phytol 173:181–190

    Article  CAS  Google Scholar 

  • Peng S, Eissenstat DM, Graham JH, Williams K, Hodge NC (1993) Growth depression in mycorrhizal citrus at high-phosphorus supply. Plant Physiol 101:1063–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. T Brit Mycol Soc 55:158–160

    Article  Google Scholar 

  • Porcel R, Gómez M, Kaldenhoff R, Ruiz-Lozano JM (2005) Impairment of NtAQP1 gene expression in tobacco plants does not affect root colonisation pattern by arbuscular mycorrhizal fungi but decreases their symbiotic efficiency under drought. Mycorrhiza 15:417

    Article  CAS  PubMed  Google Scholar 

  • Rewald B, Holzer L, Göransson H (2015) Impact of arbuscular mycorrhiza inoculum on biomass accumulation and root respiration of salt-stressed Ulmus glabra seedlings. Urban For Urban Gree 14:432

    Article  Google Scholar 

  • Ribas-Carbó M, Robinson SA, Giles L (2005) The application of the oxygen-isotope technique to assess respiratory pathway partitioning. Plant Respiration: From Cell To Ecosystem 18:31–42

    Article  Google Scholar 

  • Rivero J, Gamir J, Aroca R, Pozo MJ, Flors V (2015) Metabolic transition in mycorrhizal tomato roots. Front Microbiol 6:598

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan MH, Tibbett M, Edmonds T, Suriyagoda LD, Lambers H, Cawthray GR, Pang J (2012) Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition. Plant Cell Environ 35:2170–2180

    Article  CAS  PubMed  Google Scholar 

  • Rychter AM, Mikulska M (1990) The relationship between phosphate status and cyanide-resistant respiration in bean roots. Physiol Plant 79:663–667

    Article  CAS  PubMed  Google Scholar 

  • Rychter AM, Chauveau M, Bomsel JL, Lance C (1992) The effect of phosphate deficiency on mitochondrial activity and adenylate levels in bean roots. Physiol Plant 84:80–86

    Article  CAS  Google Scholar 

  • Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69:112–146

    Article  CAS  PubMed  Google Scholar 

  • Shane MW, Cramer MD, Funayama-Noguchi S, Cawthray GR, Millar AH, Day DA, Lambers H (2004) Developmental physiology of cluster root carboxylate synthesis and exudation in harsh hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidase. Plant Physiol 135:549–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaul-Keinan O, Gadkar V, Ginzberg I, Grúnzweig J, Chet I, Elad Y, Wininger S, Belausov E, Eshed Y, Atzmon N, Ben-Tal Y, Kapulnik Y (2002) Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices. New Phytol 154:501–507

    Article  CAS  Google Scholar 

  • Siddiqui ZA, Pichtel J (2008) Mycorrhizae: an overview. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Netherlands, pp 1–35

    Chapter  Google Scholar 

  • Sieger SM, Kristensen BK, Robson CA, Amirsadeghi S, Eng EWY, Bdel-mesih A, Moller IM, Vanlerberghe GC (2005) The role of alternative oxidase in modulating carbon use efficiency and growth during macronutrient stress in tobacco cells. J Exp Bot 56:1499–1515

    Article  CAS  PubMed  Google Scholar 

  • Silsbury JH, Smith SE, Oliver AJ (1983) A comparison of growth efficiency and specific rate of dark respiration of uninfected and vesicular-arbuscular mycorrhizal plants of Trifolium subterraneum L. New Phytol 93:555–566

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 2nd edn. Academic Press, London

    Google Scholar 

  • Suriyagoda LBD, Lambers H, Renton M, Ryan MH (2012) Growth, carboxylate exudates and nutrient dynamics in three herbaceous perennial plant species under low, moderate and high phosphorus supply. Plant Soil 358:105–117

    Article  CAS  Google Scholar 

  • Theodorou ME, Elrifi IR, Turpin DH, Plaxton WC (1991) Effects of phosphorus limitation on respiratory metabolism in the green alga Selenastrum minutum. Plant Physiol 95:1089–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanlerberghe GC, McIntosh L (1996) Signals regulating the expression of the nuclear gene encoding alternative oxidase of plant mitochondria. Plant Physiol 111:589–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veneklaas EJ, Stevens J, Cawthray GR, Turner S, Grigg AM, Lambers H (2003) Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil 248:187–197

    Article  CAS  Google Scholar 

  • Xing D, Wu Y (2014) Effect of phosphorus deficiency on photosynthetic inorganic carbon assimilation of three climber plant species. Bot Stud 55:60

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financed by the MICINN - projects BFU2011-23294 and CTM2014-53902-C2-1-P. We would like to thank Juan Camilo Moreno for providing Nicotiana tabacum L. cv Petit Havanna seeds, Biel Martorell for his technical help on the IRMS, Amparo Salido Ruiz for her technical help on the ICP-OES, and Miquel Truyols and collaborators of the UIB Experimental Field and Greenhouses which are supported by the UIBGrant 15/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel Ribas-Carbó.

Additional information

Responsible Editor: Timothy Cavagnaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del-Saz, N.F., Romero-Munar, A., Cawthray, G.R. et al. Arbuscular mycorrhizal fungus colonization in Nicotiana tabacum decreases the rate of both carboxylate exudation and root respiration and increases plant growth under phosphorus limitation. Plant Soil 416, 97–106 (2017). https://doi.org/10.1007/s11104-017-3188-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3188-y

Keywords

Navigation