Skip to main content
Log in

Direct and indirect effects of shifting rainfall on soil microbial respiration and enzyme activity in a semi-arid system

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Higher interannual precipitation variability is predicted for Southern California’s shrub-dominated systems, promoting soil moisture variation and changing community composition. We asked if soil microbial responses to rainfall regime will depend on litter inputs; showing direct effects of altered precipitation through soil moisture and indirect effects resulting from shifting litter inputs.

Methods

Soils were collected from a 2-year field rainfall manipulation experiment. Under lab conditions soils were subjected to high or low moisture pulses with litter amendments from native and exotic species in all combinations.

Results

Soil respiration was higher with larger water pulses, but rose over time in low pulse treatments (direct response). Litter additions from exotic species promoted greater respiration, and results were stronger under higher soil moisture (indirect response). Extracellular enzyme activities generally were higher with exotic litter and under high moisture pulses. Those involved in N-cycling had much larger increases activity for the exotic litter addition - high moisture pulse scenarios compared to other treatments.

Conclusions

Our results indicate the potential for microbial acclimation to drought conditions over short timescales and that below-ground processes are sensitive to direct and indirect effects of shifting rainfall regimes, especially where invasion is promoted by future climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

NAG:

β-1,4-N-acetylglucosaminidase

BGLUC:

β-Glucosidase

CBH:

Cellobiohydrolase

EEA:

Extracellular enzyme activity

LAP:

L-leucine aminopeptidase

MBM:

Microbial biomass

PHOS:

Phosphatase

References

  • Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944. doi:10.1016/J.Soilbio.2004.09.014

    Article  CAS  Google Scholar 

  • American Public Health Association (1994) Water Environment Federation (1998) Standard methods for the examination of water and wastewater. Washington, DC, USA

  • Ashbacher AC, Cleland EE (2015) Native and exotic plant species show differential growth but similar functional trait responses to experimental rainfall. Ecosphere 6. doi:10.1890/Es15-00059.1

  • Austin AT (2011) Has water limited our imagination for aridland biogeochemistry? Trends Ecol Evol 26:229–235. doi:10.1016/J.Tree.2011.02.003

    Article  PubMed  Google Scholar 

  • Austin AT et al. (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235. doi:10.1007/S00442-004-1519-1

    Article  PubMed  Google Scholar 

  • Beck T, Joergensen RG, Kandeler E, Makeschin F, Nuss E, Oberholzer HR, Scheu S (1997) An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol Biochem 29:1023–1032. doi:10.1016/S0038-0717(97)00030-8

    Article  CAS  Google Scholar 

  • Berg N, Hall A (2015) Increased interannual precipitation extremes over California under climate change. J Clim 28:6324–6334. doi:10.1175/Jcli-D-14-00624.1

    Article  Google Scholar 

  • Birch H (1958) The effect of soil drying on humus decomposition and nitrogen availability. Plant and soil 10:9–31

    Article  CAS  Google Scholar 

  • Blazewicz SJ, Schwartz E, Firestone MK (2014) Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. Ecology 95:1162–1172. doi:10.1890/13-1031.1

    Article  PubMed  Google Scholar 

  • Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Chang Biol 15:808–824. doi:10.1111/J.1365-2486.2008.01681.X

    Article  Google Scholar 

  • Brando PM, Nepstad DC, Davidson EA, Trumbore SE, Ray D, Camargo P (2008) Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos T R Soc B 363:1839–1848. doi:10.1098/Rstb.2007.0031

    Article  Google Scholar 

  • Bray SR, Kitajima K, Mack MC (2012) Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Biol Biochem 49:30–37. doi:10.1016/J.Soilbio.2012.02.009

    Article  CAS  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil-nitrogen - a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. doi:10.1016/0038-0717(85)90144-0

    Article  CAS  Google Scholar 

  • Castro-Diez P, Godoy O, Alonso A, Gallardo A, Saldana A (2014) What explains variation in the impacts of exotic plant invasions on the nitrogen cycle? A meta-analysis. Ecol Lett 17:1–12. doi:10.1111/Ele.12197

    Article  CAS  PubMed  Google Scholar 

  • Cayan D et al. (2009) Climate change scenarios and sea level rise estimates for the California 2008 climate change scenarios assessment California Climate Change Center CEC-500-2009-014-D doi:http://www.energy.ca.gov/2009publications/CEC-500-2009-014/CEC-500-2009-014-D.PDF

  • Charlotte J Alster, Donovan P German, Ying Lu, Steven D Allison (2013) Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland. Soil Biology and Biochemistry 64:68–79

  • Chen SP, Lin GH, Huang JH, Jenerette GD (2009) Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Glob Chang Biol 15:2450–2461. doi:10.1111/J.1365-2486.2009.01879.X

    Article  Google Scholar 

  • Cleland EE et al. (2013) Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 94:1687–1696. doi:10.1890/12-1006.1

    Article  PubMed  Google Scholar 

  • Collins SL, Sinsabaugh RL, Crenshaw C, Green L, Porras-Alfaro A, Stursova M, Zeglin LH (2008) Pulse dynamics and microbial processes in aridland ecosystems. J Ecol 96:413–420. doi:10.1111/J.1365-2745.2008.01362.X

    Article  Google Scholar 

  • Collins M et al. (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF et al. (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambrige, pp. 1029–1136. doi:10.1017/CBO9781107415324.024

    Google Scholar 

  • Cook FJ, Orchard VA (2008) Relationships between soil respiration and soil moisture. Soil Biol Biochem 40:1013–1018. doi:10.1016/J.Soilbio.2007.12.012

    Article  CAS  Google Scholar 

  • D’Antonio CM (2000) Fire, plant invasions, and global changes. In: Mooney HA, Hobbs RJ (eds) Invasive species in a changing world. Island Press, Washington, D.C., pp. 65–94

    Google Scholar 

  • de Vries FT, Shade A (2013) Controls on soil microbial community stability under climate change. Front Microbiol 4. doi:10.3389/fmicb.2013.00265

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523. doi:10.1007/S10021-002-0151-3

    Article  CAS  Google Scholar 

  • Esch EH, Hernandez DL, Pasari JR, Kantor RSG, Selmants PC (2013) Response of soil microbial activity to grazing, nitrogen deposition, and exotic cover in a serpentine grassland. Plant Soil 366:671–682. doi:10.1007/S11104-012-1463-5

    Article  CAS  Google Scholar 

  • Evans SE, Burke IC (2013) Carbon and nitrogen decoupling under an 11-year drought in the shortgrass steppe. Ecosystems 16:20–33. doi:10.1007/S10021-012-9593-4

    Article  CAS  Google Scholar 

  • Evans SE, Wallenstein MD (2012) Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? Biogeochemistry 109:101–116. doi:10.1007/S10533-011-9638-3

    Article  Google Scholar 

  • Evans SE, Wallenstein MD (2014) Climate change alters ecological strategies of soil bacteria. Ecol Lett 17:155–164. doi:10.1111/ele.12206

    Article  PubMed  Google Scholar 

  • Fierer N, Schimel JP (2002) Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34:777–787. doi:10.1016/S0038-0717(02)00007-X

    Article  CAS  Google Scholar 

  • Fox J, Weisberg S (2011) An R companion to applied regression, Second edn. Sage, Thousand Oaks

    Google Scholar 

  • Gorissen A et al. (2004) Climate change affects carbon allocation to the soil in shrublands. Ecosystems 7:650–661. doi:10.1007/S10021-004-0218-4

    Article  CAS  Google Scholar 

  • Hawkes CV, Keitt TH (2015) Resilience vs. historical contingency in microbial responses to environmental change. Ecol Lett 18:612–625. doi:10.1111/ele.12451

    Article  PubMed  Google Scholar 

  • Hobbs RJ, Mooney HA (1991) Effects of rainfall variability and gopher disturbance on serpentine annual grassland dynamics. Ecology 72:59–68. doi:10.2307/1938902

    Article  Google Scholar 

  • Hobbs RJ, Mooney HA (2005) Invasive species in a changing world: the interactions between global change and invasives. In: Mooney HA (ed) Invasive alien species: a new synthesis. Island Press, Washington, DC

    Google Scholar 

  • Hugh AL, Henry, John D Juarez, Christopher B Field, Peter M Vitousek (2005) Interactive effects of elevated CO2, N deposition and climate change on extracellular enzyme activity and soil density fractionation in a California annual grassland. Global Change Biology 11 (10):1808–1815

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge

    Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330. doi:10.1007/S002030050649

    Article  CAS  PubMed  Google Scholar 

  • KR Saiya-Cork, RL Sinsabaugh, DR Zak (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry 34 (9):1309–1315

  • Kramer S, Green DM (2000) Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biol Biochem 32:179–188. doi:10.1016/S0038-0717(99)00140-6

    Article  CAS  Google Scholar 

  • Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR (2012) Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93:1867–1879

    Article  PubMed  Google Scholar 

  • Li XZ, Sarah P (2003) Enzyme activities along a climatic transect in the Judean Desert. Catena 53:349–363. doi:10.1016/S0341-8162(03)00087-0

    Article  CAS  Google Scholar 

  • Liao CZ et al. (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714. doi:10.1111/J.1469-8137.2007.02290.X

    Article  CAS  PubMed  Google Scholar 

  • Meisner A, Rousk J, Bååth E (2015) Prolonged drought changes the bacterial growth response to rewetting. Soil Biol Biochem 88:314–322

    Article  CAS  Google Scholar 

  • Mikha MM, Rice CW, Milliken GA (2005) Carbon and nitrogen mineralization as affected by drying and wetting cycles. Soil Biol Biochem 37:339–347. doi:10.1016/J.Soilbio.2004.08.003

    Article  CAS  Google Scholar 

  • Ng EL, Patti AF, Rose MT, Schefe CR, Smernik RJ, Cavagnaro TR (2015) Do organic inputs alter resistance and resilience of soil microbial community to drying? Soil Biol Biochem 81:58–66. doi:10.1016/j.soilbio.2014.10.028

    Article  CAS  Google Scholar 

  • Placella SA, Brodie EL, Firestone MK (2012) Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. P Natl Acad Sci USA 109:10931–10936. doi:10.1073/pnas.1204306109

    Article  CAS  Google Scholar 

  • Pysek P, Jarosik V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vila M (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Chang Biol 18:1725–1737. doi:10.1111/J.1365-2486.2011.02636.X

    Article  PubMed Central  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Rao LE, Allen EB (2010) Combined effects of precipitation and nitrogen deposition on native and invasive winter annual production in California deserts. Oecologia 162:1035–1046

    Article  PubMed  Google Scholar 

  • Robert L Sinsabaugh, Christian L Lauber, Michael N Weintraub, Bony Ahmed, Steven D Allison, Chelsea Crenshaw, Alexandra R Contosta, Daniela Cusack, Serita Frey, Marcy E Gallo, Tracy B Gartner, Sarah E Hobbie, Keri Holland, Bonnie L Keeler, Jennifer S Powers, Martina Stursova, Cristina Takacs-Vesbach, Mark P Waldrop, Matthew D Wallenstein, Donald R Zak, Lydia H Zeglin, (2008) Stoichiometry of soil enzyme activity at global scale. Ecology Letters

  • Sandel B, Dangremond EM (2012) Climate change and the invasion of California by grasses. Glob Chang Biol 18:277–289. doi:10.1111/J.1365-2486.2011.02480.X

    Article  Google Scholar 

  • Sardans J, Penuelas J (2005) Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. Forest. Soil Biol Biochem 37:455–461. doi:10.1016/J.Soilbio.2004.08.004

    Article  CAS  Google Scholar 

  • Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394. doi:10.1890/06-0219

    Article  PubMed  Google Scholar 

  • Schwinning S, Sala OE (2004) Hierarchy of responses to resource pulses in and and semi-arid ecosystems. Oecologia 141:211–220. doi:10.1007/S00442-004-1520-8

    Article  PubMed  Google Scholar 

  • Shi AD, Marschner P (2014) Drying and rewetting frequency influences cumulative respiration and its distribution over time in two soils with contrasting management. Soil Biol Biochem 72:172–179. doi:10.1016/J.Soilbio.2014.02.001

    Article  CAS  Google Scholar 

  • Sinsabaugh RL (1994) Enzymatic analysis of microbial pattern and process Biol Fert. Soils 17:69–74

    CAS  Google Scholar 

  • Sinsabaugh RL, Hill BH, Shah JJF (2009) Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795–U117. doi:10.1038/Nature08632

    Article  CAS  PubMed  Google Scholar 

  • Smith MD, Knapp AK, Collins SL (2009) A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90:3279–3289

    Article  PubMed  Google Scholar 

  • Stevenson, FJ, Cole, MA (1999) Cycles of soils: carbon, nitrogen, phosphorus, sulfur, micronutrients. Wiley

  • Tiemann LK, Billings SA (2011) Changes in variability of soil moisture alter microbial community C and N resource use. Soil Biol Biochem 43:1837–1847. doi:10.1016/J.Soilbio.2011.04.020

    Article  CAS  Google Scholar 

  • Vangestel M, Merckx R, Vlassak K (1993) Microbial biomass responses to soil drying and rewetting - the fate of fast-growing and slow-growing microorganisms in soils from different climates. Soil Biol Biochem 25:109–123. doi:10.1016/0038-0717(93)90249-B

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Wolkovich EM, Lipson DA, Virginia RA, Cottingham KL, Bolger DT (2010) Grass invasion causes rapid increases in ecosystem carbon and nitrogen storage in a semiarid shrubland. Glob Chang Biol 16:1351–1365. doi:10.1111/J.1365-2486.2009.02001.X

    Article  Google Scholar 

  • Xiang SR, Doyle A, Holden PA, Schimel JP (2008) Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biol Biochem 40:2281–2289. doi:10.1016/j.soilbio.2008.05.004

    Article  CAS  Google Scholar 

  • Yu ZH, Wang GH, Marsthner P (2014) Drying and rewetting - effect of frequency of cycles and length of moist period on soil respiration and microbial biomass. Eur J Soil Biol 62:132–137. doi:10.1016/J.Ejsobi.2014.03.007

    Article  Google Scholar 

Download references

Acknowledgments

We thank Rachel Abbott, Angie Ashbacher, and Christopher Kopp for maintaining the field experiment along with Rochelle Aran and Magali Porrachia for their laboratory assistance. This work was performed at the University of California Natural Reserve System and supported by a Mildred E. Mathias Graduate Student Research Grant from the University of California Natural Reserve System. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1144086) and also a National Science Foundation Division of Environmental Biology grant (DEB 1154082). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen H. Esch.

Additional information

Responsible Editor: Sven Marhan.

Appendices

Appendix 1

Table 3 Summary of mean species responses to microbial measurements. Values are percent increases or decreases observed for each species as compared to the no litter addition control treatment. Microbial responses measured include soil respiration (Respiration), microbial biomass carbon and nitrogen (MBM C and MBM N), and activity of extracellular enzymes (β-glucosidase (BGLUC), cellobiohydrolase (CBH), L-leucine aminopeptidase (LAP), β-1,4-N-acetylglucosaminidase (NAG), and phosphatase (PHOS))

Appendix 2

Table 4 Summary of F and p-values for the linear model for effects of laboratory pulse size (d.f. = 1), litter origin (d.f. = 2), and the interaction (d.f. = 2) on biomass specific activity of each extracellular enzyme (β-glucosidase (BGLUC), cellobiohydrolase (CBH), L-leucine aminopeptidase (LAP), β-1,4-N-acetylglucosaminidase (NAG), and phosphatase (PHOS)). Biomass specific activity is for both microbial biomass carbon and microbial biomass nitrogen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esch, E.H., Lipson, D. & Cleland, E.E. Direct and indirect effects of shifting rainfall on soil microbial respiration and enzyme activity in a semi-arid system. Plant Soil 411, 333–346 (2017). https://doi.org/10.1007/s11104-016-3027-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-3027-6

Keywords

Navigation