Skip to main content
Log in

Effect of plant functional type on methane dynamics in a restored minerotrophic peatland

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Peatland methane (CH4) fluxes may vary between plant types; however, in mixed communities, the specific role of each species is difficult to distinguish. The goal of this study was to determine the individual and interacting effect of moss, graminoid and shrub plant functional types on CH4 dynamics of experimentally planted plots in a rewetted minerotrophic peatland.

Methods

We measured CH4 flux, pore water CH4 concentration and CH4 production and oxidation potential in pure stands of reintroduced Tomenthypnum nitens (Hedw.) Loeske, Carex aquatilis Wahlenb, or Myrica gale L., as well as mixtures of T. nitens + C. aquatilis and T. nitens + M. gale. Methane flux was also measured on bare peat plots.

Results

The presence of both the graminoid C. aquatilis and the shrub M. gale resulted in the highest CH4 production potential in near surface peat (10 cm). The presence of moss (T. nitens) and C. aquatilis significantly increased CH4 oxidation potential. Water table position was a significant control on CH4 flux, but the presence of C. aquatilis maintained higher flux even at dry plots. Plots including C. aquatilis had significantly lower pore water CH4 concentration at 30 cm depth, likely reflecting CH4 oxidation and transport.

Conclusions

Management of restored sites aiming to reduce CH4 flux should focus on hydrology, i.e. water table position. The presence of graminoids enhances CH4 flux, while moss presence may result in lower CH4 emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alm J, Shurpali NJ, Tuittila E-S, Laurila T, Maljanen M, Saarnio S, Minkkinen K (2007) Methods for determining emission factors for the use of peat and peatlands - flux measurement and modeling. Boreal. Environ Res 12:85–100

    CAS  Google Scholar 

  • Andersen R, Pouliot R, Rochefort L (2013) Above-ground net primary production from vascular plants shifts the balance towards organic matter accumulation in restored Sphagnum bogs. Wetlands 33:811–821

    Article  Google Scholar 

  • Arah JRM, Stephen KD (1998) Model of the processes leading to methane emission from peatland. Atmos Environ 32:3257–3264

    Article  CAS  Google Scholar 

  • Armstrong A, Waldron S, Ostle NJ, Richardson H, Whitaker J (2015) Biotic and abiotic factors interact to regulate northern peatland carbon cycling. Ecosystems 18:1395–1409

    Article  CAS  Google Scholar 

  • Basiliko NR, Knowles R, Moore TR (2004) Roles of moss species and habitat in methane consumption potential in a northern peatland. Wetlands 24:178–185

    Article  Google Scholar 

  • Basiliko N, Blodau C, Roehm C, Bengtson P, Moore TR (2007) Regulation of decomposition and methane dynamics across natural, commercially mined, and restored northern peatlands. Ecosystems 10:1148–1165

    Article  CAS  Google Scholar 

  • Bellisario LM, Bubier JL, Moore TR, Chanton JP (1999) Controls on CH4 emissions from a northern peatland. Glob Biogeochem Cycles 13:81–91

    Article  CAS  Google Scholar 

  • Beyer C, Höper H (2015) Greenhouse gas exchange of rewetted bog peat extraction sites and a Sphagnum cultivation field in Northwest Germany. Biogeosciences 12:2101–2117

    Article  CAS  Google Scholar 

  • Bhullar GS, Edwards PJ, Venterink HO (2013) Variation in the plant-mediated methane transport and its importance for methane emission from intact wetland peat mesocosms. J Plant Ecol 6:298–304

    Article  Google Scholar 

  • Bhullar GS, Edwards PJ, Venterink HO (2014) Influence of different plant apecies on methane emissions from soil in a restored Swiss wetland. PLoS One 9: e89588, doi:10.1371/journal.pone.0089588

  • Bohdálková L, Curík J, Kubena AA, Buzek F (2013) Dynamics of methane fluxes from two peat bogs in the Ore Mountains, Czech Republic. Plant Soil Environ 59:14–21

    Google Scholar 

  • Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emission from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol 19:1325–1346

    Article  PubMed  Google Scholar 

  • Bubier JL (1995) The relationship of vegetation to methane emission and hydrochemical gradients in northern peatlands. J Ecol 83:403–420

    Article  Google Scholar 

  • Chasar LS, Chanton JP, Glaser PH, Siegel DI (2000) Methane concentration and stable isotope distribution as evidence of rhizospheric processes: comparison of a fen and bog in the glacial Lake Agassiz peatland complex. Ann Bot 86:655–663

    Article  CAS  Google Scholar 

  • Clymo RS, Bryant CL (2008) Diffusion and mass flow of dissolved carbon dioxide, methane, and dissolved organic carbon in a 7-m deep raised peat bog. Geochim Cosmochim Ac 72:2048–2066

    Article  CAS  Google Scholar 

  • Clymo RS, Pearce DME (1995) Methane and carbon dioxide production in, transport through, and efflux from a peatland. Philos T R Soc A 351:249–259

    Article  CAS  Google Scholar 

  • Cooper MDA, Evans CD, Zielinski P, Levy PE, Gray A, Peacock M, Norris D, Fenner N, Freeman C (2014) Infilled ditches are hotspots of landscape methane flux following peatland rewetting. Ecosystems 17:1227–1241. doi:10.1007/s10021-014-9791-3

    Article  CAS  Google Scholar 

  • Couwenberg J, Fritz C (2012) Towards developing IPCC methane ‘emission factors’ for peatlands (organic soils). Mires and Peat 10: Art. 03 (Online: http://www.mires-and-peat.net/pages/volumes/map10/map1003.php).

  • Couwenberg J, Thiele A, Tanneberger F, Augustin J, Bärisch S, Dubovik D, Liashchynskaya N, Michaelis D, Minke M, Skuratovich A, Joosten H (2011) Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674:67–89

    Article  CAS  Google Scholar 

  • Cronk JK, Fennesey MS (2001) Wetland Plants: Biology and Ecology. Lewis Publishers, Boca Raton

  • Dannenberg S, Conrad R (1999) Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. Biogeochemistry 45:53–71

    Google Scholar 

  • Davies G, Hamilton A, Smith A, Legg C (2008) Using visual obstruction to estimate heathland fuel load and structure. Int J Wildland Fire 17:380–389

    Article  Google Scholar 

  • Dias ATC, Hoorens B, van Logtestijn RSP, Vermaat JE, Aerts R (2010) Plant species composition can be used as a proxy to predict methane emissions in peatland ecosystems after land-use change. Ecosystems 13:526–538

    Article  CAS  Google Scholar 

  • Díaz S, Hector A, Wardle DA (2009) Biodiversity in forest carbon sequestration initiatives: not just a side benefit. Curr Opin Environ Sustain 1:55–60

    Article  Google Scholar 

  • Dieleman CM, Branfireun BA, McLaughlin JW, Lindo ZE (2015) Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability. Glob Chang Biol 21:388–395

    Article  PubMed  Google Scholar 

  • Dunfield PF, Knowles R, Dumont R, Moore TR (1993) Methane production and consumption in temperate and subarctice peat soils: response to temperature and pH. Soil Biol Biochem 25:321–326

    Article  CAS  Google Scholar 

  • Fritz C, Pancotto VA, Elzeng JTM, Visser EJW, Grootjans AP, Pol A, Iturraspe R, Roelofs JGM, Smolders AJP (2011) Zero methane emission bogs: extreme rhizospheric oxygenation by cushion plants in Patagonia. New Phytol 190:398–408

    Article  PubMed  Google Scholar 

  • González E, Rochefort L (2014) Drivers of success in 53 cutover bogs restored by a moss layer transfer technique. Ecol Eng 68:279–290

    Article  Google Scholar 

  • González E, Rochefort L, Boudreau S, Poulin M (2014) Combining indicator species and key environmental and management factors to predict restoration success of degraded ecosystems. Ecol Indic 46:156–166

    Article  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  PubMed  Google Scholar 

  • Graf M, Rochefort L (2009) Examining the peat-accumulating potential of fen vegetation in the context of fen restoration of harvested peatlands. Écoscience 16:158–166

    Article  Google Scholar 

  • Green SM, Baird AJ (2012) A mesocosm study of the role of the sedge Eriophorum angustifolium in the efflux of methane – including that due to episodic ebullition – from peatlands. Plant Soil 351:207–218

    Article  CAS  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical Journal 50:346–363

    Article  PubMed  Google Scholar 

  • Joabsson A, Christensen TR, Wallen B (1999) Vascular plant controls on methane emissions from northern peat forming wetlands. Trends Ecol Evol 14:385–388

    Article  CAS  PubMed  Google Scholar 

  • Kao-Kniffin J, Freyre DS, Balser TC (2010) Methane dynamics across wetland plant species. Aquat Bot 93:107–113

    Article  CAS  Google Scholar 

  • Ketcheson SJ, Whittington PN, Price JS (2012) The effect of peatland harvesting on snow accumulation, ablation and snow surface energy balance. Hydrol Process 26:2592–2600

    Article  Google Scholar 

  • Kivimäki SK, Yli-petäys M, Tuittila E-S (2007) Carbon sink function of sedge and Sphagnum patches in a restored cut-away peatland: increased functional diversity leads to higher production. J Appl Ecol 45:921–929

    Article  Google Scholar 

  • Koelbener A, Ström L, Edwards PJ, Venterink HO (2010) Plant species from mesotrophic wetlands cause relatively high methane emissions from peat soil. Plant Soil 326:147–158

    Article  CAS  Google Scholar 

  • Kuiper JJ, Mooij WM, Bragazza L, Robroek BJM (2014) Plant functional types define magnitude of drought response in peatland CO2 exchange. Ecology 95:123–131

    Article  PubMed  Google Scholar 

  • Lai DYF (2009) Methane dynamics in northern peatlands: a review. Pedosphere 19:409–421

    Article  CAS  Google Scholar 

  • Larmola T, Tuittila E-S, Tiirola M, Nykänen H, Martikainen PJ, Yrjälä K, Tuomivirta T, Fritze H (2010) The role of Sphagnum mosses in the methane cycling of a boreal mire. Ecology 91:2356–2365

    Article  PubMed  Google Scholar 

  • Liebner S, Zeyer J, Wagner D, Schubert C, Pfeiffer E-M, Knoblauch C (2011) Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra. J Ecol 99:914–922

    Article  CAS  Google Scholar 

  • Mahmood MS, Strack M (2011) Methane dynamics of recolonized cutover minerotrophic peatland: implications for restoration. Ecol Eng 37:1859–1868

    Article  Google Scholar 

  • Marinier M, Glatzel S, Moore T (2004) The role of cotton-grass (Eriophorum vaginatum) in the exchange of CO2 and CH4 at two restored peatlands, eastern Canada. Écoscience 11:141–149

    Article  Google Scholar 

  • McNeil P, Waddington JM (2003) Moisture controls on Sphagnum growth and CO2 exchange on a cutover bog. J app. Ecol 40:354–367

    Google Scholar 

  • Moor H, Hylander K, Norberg J (2015) Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits. Ambio 44:S113–S126

    Article  PubMed  Google Scholar 

  • Moore TR, Roulet NT (1993) Methane flux – water-table relations in northern wetlands. Geophys Res Lett 20:587–590

    Article  CAS  Google Scholar 

  • Olefeldt D, Turetsky MR, Crill PM, McGuire AD (2013) Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Glob Chang Biol 19:589–603

    Article  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2014) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–117, URL http://CRAN.R-project.org/package=nlme

  • Popp TJ, Chanton JP, Whiting GJ, Grant N (2000) Evaluation of methane oxidation in the rhizosphere of a Carex dominated fen in Central Alberta, Canada. Biogeochemistry 51:259–281

    Article  CAS  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; http://www.R-project.org/

  • Riutta T, Laine J, Tuittila E-S (2007) Sensitivity of CO2 exchange of fen ecosystem components to water level variation. Ecosystems 10:718–733

    Article  CAS  Google Scholar 

  • Robroek BJM, Albrecht RJH, Hamard S, Pulgarin A, Bragazza L, Buttler A, Jassey VEJ (2015a) Peatland vascular plant functional types affect dissolved organic matter chemistry. Plant Soil. doi:10.1007/s11104-015-2710-3

    Google Scholar 

  • Robroek BJM, Jassey VEJ, Kox MAR, Berendsen RL, Mills RTE, Cecillon L, Puissant J, Meima-Franke M, Bakker PAHM, Bodelier PLE (2015b) Peatland vascular plant functional types affect methane dynamics by altering microbial community structure. J Ecol 103:925–934

    Article  CAS  Google Scholar 

  • Rochefort L, Quinty F, Campeau S, Johnson K, Malterer T (2003) North American approach to the restoration of Sphagnum dominated peatlands. Wetl Ecol Manag 11:3–20

    Article  CAS  Google Scholar 

  • Saarnio S, Silvola J (1999) Effects of increased CO2 and N on CH4 efflux from a boreal mire: a growth chamber experiment. Oecologia 119:349–356

    Article  Google Scholar 

  • Schimel JP (1995) Plant-transport and methane production as controls on methane flux from arctic wet meadow tundra. Biogeochemistry 28:183–200

    Article  CAS  Google Scholar 

  • Strack M, Waddington JM (2008) Spatio-temporal variability in peatland subsurface methane dynamics. J Geophys Res 113:G02010. doi:10.1029/2007JG000472

    Article  Google Scholar 

  • Strack M, Zuback YCA (2013) Annual carbon balance of a peatland 10 yr following restoration. Biogeosciences 10:2885–2896

    Article  CAS  Google Scholar 

  • Strack M, Waddington JM, Tuittila E-S (2004) Effect of water table drawdown on northern peatland methane dynamics: implications for climate change. Glob Biogeochem Cycles 18:GB4003. doi:10.1029/2003GB002209

    Article  Google Scholar 

  • Strack M, Waller MF, Waddington JM (2006) Sedge succession and peatland methane dynamics: a potential feedback to climate change. Ecosystems 9:278–287

    Article  CAS  Google Scholar 

  • Strack M, Keith AM, Xu B (2014) Growing season carbon dioxide and methane exchange at a restored peatland on the western boreal plain. Ecol Eng 64:231–239

    Article  Google Scholar 

  • Ström L, Ekberg A, Mastepanov M, Christensen TR (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Change Biol 9:1185–1192

    Article  Google Scholar 

  • Ström L, Mastepanov M, Christensen TR (2005) Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands. Biogeochemistry 75:65–82

    Article  Google Scholar 

  • Tuitilla E-S, Komulainen V-M, Vasander H, Nykänen H, Martikainen PJ, Laine J (2000) Methane dynamics of a restored cut-away peatland. Glob Change Biol 6:569–581

    Article  Google Scholar 

  • Van Winden JL, Reichart G-J, McNamara NP, Benthien A, Damasté JSS (2012) Temperature-induced increase in methane release from peat bogs: a mesocosm experiment. PLoS One 7:e39614. doi:10.1371/journal.pone.0039614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanselow-Algan M, Schmidt SR, Greven M, Fiencke C, Kutzbach L, Pfeiffer E-M (2015) High methane emissions dominated annual greenhouse gas balances 30 years after bog rewetting. Biogeosciences 12:4361–4371

    Article  Google Scholar 

  • Waddington JM, Day SM (2007) Methane emissions from a peatland following restoration. J Geophys Res 112:G03018. doi:10.1029/2007JG000400

    Article  Google Scholar 

  • Waddington JM, Price JS (2000) Effect of peatland drainage, harvesting, and restoration on atmospheric water and carbon exchange. Phys Geogr 21:433–451

    Google Scholar 

  • Waddington JM, Roulet NT (1997) Groundwater flow and dissolved carbon movement in a boreal peatland. J Hydrol 191:122–138

    Article  CAS  Google Scholar 

  • Waddington JM, Roulet NT, Swanson RV (1996) Water table control for CH4 emission enhancement by vascular plants in boreal peatlands. J Geophys Res 101: 22775–22785.

  • Waddington JM, Warner KD, Kennedy GW (2002) Cutover peatlands: A persistent source of atmospheric CO2. Global Biogeochem Cy 16:1002. doi:10.1029/2001GB001398

    Article  Google Scholar 

  • Wang Y, Yang H, Ye C, Chen X, Xie B, Huang C, Zhang J, Xu M (2013) Effects of plant species on soil microbial processes and CH4 emission from constructed wetlands. Environ Poll 174:273–278

    Article  CAS  Google Scholar 

  • Ward SE, Ostle NJ, Oakley S, Quirk H, Henrys PA, Bardgett RD (2013) Warming effects on greenhouse gas fluxes in a peatland are modulated by vegetation composition. Ecol Lett 16:1285–1293

    Article  PubMed  Google Scholar 

  • Whiting GJ, Chanton JP (1993) Primary production control of methane emission from wetlands. Nature 364:794–795

    Article  CAS  Google Scholar 

  • Wilson D, Alm J, Laine J, Byrne KA, Farrell EP, Tuittila E-S (2007) Rewetting of cutaway peatlands: are we re-creating hot spots of methane emissions. Restor Ecol 17:796–806

    Article  Google Scholar 

Download references

Acknowledgments

Funding was provided by the Industrial Research Chair in Peatland Management to LR funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) supported by the Canadian Sphagnum Peat Moss Association and its members. Dr. Martin Brummell and two anonymous reviewers provided useful comments on the manuscript. We are grateful for field assistance provided by Elena Farries, Sarah Scarlett, Magnus Keith, Marie-Eve Gauthier and Torben Russo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Strack.

Additional information

Responsible Editor: Paul Bodelier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strack, M., Mwakanyamale, K., Hassanpour Fard, G. et al. Effect of plant functional type on methane dynamics in a restored minerotrophic peatland. Plant Soil 410, 231–246 (2017). https://doi.org/10.1007/s11104-016-2999-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2999-6

Keywords

Navigation