Skip to main content
Log in

Zinc supply impacts on the relative expression of a metallothionein-like gene in Coffea arabica plants

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Zinc (Zn) is an essential nutrient for plants, as it functions as a component and cofactor of enzymes. Metallothioneins (MTs), are known to participate in the process of metal homeostasis have been hypothesized to be partially responsible for the distribution of Zn in plants. We aimed to characterize putative MT-like genes and to analyze their expression in response to Zn supplementation in coffee.

Methods

Coffee seedlings were cultivated in Hoagland’s solution without Zn, and after 120 days, Zn was supplied at different concentrations. Fully expanded leaves were collected for analysis of MT relative gene expression, Zn concentrations and enzymatic activity.

Results

Seven putative genes were obtained in a search of the CAFEST database. Electronic Northern analysis revealed that MTs were expressed in different tissues, developmental stages and mostly under arachidonic acid treatment. Superoxide dismutase (SOD) quantification indicated that the Zn dose influenced the enzymatic activity; the lowest being at 0.6 % Zn. Quantitative expression analyses of putative MTs demonstrated that these genes are differentially expressed in response to Zn supplementation.

Conclusions

There is a positive correlation between MT relative expression and Zn concentration and we believe that MTs play an important role in Zn homeostasis in coffee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdullah SNA, Cheah SC, Murphy DJ (2002) Isolation and characterisation of two divergent type 3 metallothioneins from oil palm, Elaeis guineensis. Plant Physiol Biochem 40:255–263. doi:10.1016/s0981-9428(02)01366-9

    Article  CAS  Google Scholar 

  • Akashi K, Nishimura N, Ishida Y, Yokota A (2004) Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochem Biophys Res Commun 323:72–78. doi:10.1016/j.bbrc.2004.08.056

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarenga SM, Caixeta ET, Hufnagel B, Thiebaut F, Maciel-Zambolim E, Zambolim L, Sakiyama NS (2010) In silico identification of coffee genome expressed sequences potentially associated with resistance to diseases. Genet Mol Biol 33:795–U289. doi:10.1590/s1415-47572010000400031

    Article  PubMed  PubMed Central  Google Scholar 

  • Barreto HG, Lazzari F, Sagio SA, Chalfun-Junior A, Paiva LV, Benedito VA (2012) In silico and quantitative analyses of the putative FLC-like homologue in coffee (coffea arabica l.). Plant Mol Biol Report 30:29–35. doi:10.1007/s11105-011-0310-9

    Article  CAS  Google Scholar 

  • Barsalobres-Cavallari CF, Severino FE, Maluf MP, Maia IG (2009) Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Mol Biol 10. doi:10.1186/1471-2199-10-1

  • Bhalerao R, Keskitalo J, Sterky F, Erlandsson R, Bjorkbacka H, Birve SJ, Karlsson J, Gardestrom P, Gustafsson P, Lundeberg J, Jansson S (2003) Gene expression in autumn leaves. Plant Physiol 131:430–442. doi:10.1104/pp.012732

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyce TM, Zwick ME, Aquadro CF (1989) Mitochondrial-DNA in the bark weevils - size, structure and heteroplasmy. Genetics 123:825–836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702. doi:10.1111/j.1469-8137.2007.01996.x

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I (2000) Tansley review No. 111 - Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205. doi:10.1046/j.1469-8137.2000.00630.x

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182. doi:10.1146/annurev.arplant.53.100301.135154

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira RR, Chalfun-Junior A, Paiva LV, Andrade AC (2010) In silico and quantitative analyses of MADS-box genes in coffea arabica. Plant Mol Biol Report 28:460–472. doi:10.1007/s11105-009-0173-5

    Article  Google Scholar 

  • Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, Zheng C, Alberti A, Anthony F, Aprea G, Aury J-M, Bento P, Bernard M, Bocs S, Campa C, Cenci A, Combes M-C, Crouzillat D, Da Silva C, Daddiego L, De Bellis F, Dussert S, Garsmeur O, Gayraud T, Guignon V, Jahn K, Jamilloux V, Joet T, Labadie K, Lan T, Leclercq J, Lepelley M, Leroy T, Li L-T, Librado P, Lopez L, Munoz A, Noel B, Pallavicini A, Perrotta G, Poncet V, Pot D, Priyono RM, Rouard M, Rozas J, Tranchant-Dubreuil C, VanBuren R, Zhang Q, Andrade AC, Argout X, Bertrand B, de Kochko A, Graziosi G, Henry RJ, Jayarama MR, Nagai C, Rounsley S, Sankoff D, Giuliano G, Albert VA, Wincker P, Lashermes P (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345:1181–1184. doi:10.1126/science.1255274

    Article  CAS  PubMed  Google Scholar 

  • Domenech J, Orihuela R, Mir G, Molinas M, Atrian S, Capdevila M (2007) The Cd-II-binding abilities of recombinant Quercus suber metallothionein: bridging the gap between phytochelatins and metallothioneins. J Biol Inorg Chem 12:867–882. doi:10.1007/s00775-007-0241-y

    Article  CAS  PubMed  Google Scholar 

  • Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. BBA-Mol Cell Res 1763:711–722. doi:10.1016/j.bbamcr.2006.03.005

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:14863–14868. doi:10.1073/pnas.95.25.14863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteves Vieira LG, Andrade AC, Colombo CA, De Araújo Moraes AH, Metha Â, De Oliveira AC, Labate CA, Marino CL, Monteiro-Vitorello CDB, Monte DDC, Giglioti É, Kimura ET, Romano E, Kuramae EE, Macedo Lemos EG, Pereira De Almeida ER, Jorge ÉC, Albuquerque ÉVS, Da Silva FR, Vinecky F, Sawazaki HE, Dorry HFA, Carrer H, Abreu IN, Batista JAN, Teixeira JB, Kitajima JP, Xavier KG, De Lima LM, Aranha De Camargo LE, Protasio Pereira LF, Coutinho LL, Franco Lemos MV, Romano MR, Machado MA, Do Carmo Costa MM, Grossi De Sá MF, Goldman MHS, Ferro MIT, Penha Tinoco ML, Oliveira MC, Van Sluys MA, Shimizu MM, Maluf MP, Souza Da Eira MT, Guerreiro Filho O, Arruda P, Mazzafera P, Correa Mariani PDS, De Oliveira RLBC, Harakava R, Balbao SF, Siu MT, Zingaretti Di Mauro SM, Santos SN, Siqueira WJ, Lacerda Costa GG, Formighieri EF, Carazzolle MF, Guimarães Pereira GA (2006) Brazilian coffee genome project: An EST-based genomic resource. Braz J Plant Physiol 18:95–108. doi:10.1590/S1677-04202006000100008

    Article  Google Scholar 

  • Fávaro JRA (1992) Crescimento e produção de Coffea arabica L. em resposta a nutrição foliar de zinco na presença de cloreto de potássio. Curso de Pós-graduação em Fisiologia Vegetal. Universidade Federal de Viçosa

  • Freisinger E (2008) Plant MTs-long neglected members of the metallothionein superfamily. Dalton Trans 47:6663–6675. doi:10.1039/b809789e

    Article  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases. 1. Occurrence in higher-plants. Plant Physiol 59:309–314. doi:10.1104/pp.59.2.309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldsbrough P, Bundithya W, Orczyk W, Zhou JM (1997) Regulation and function of metallothionein genes in plants. Plant Physiol 114:71003–71003

    Google Scholar 

  • Guo WJ, Bundithya W, Goldsbrough PB (2003) Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytol 159:369–381. doi:10.1046/j.1469-8137.2003.00813.x

    Article  CAS  Google Scholar 

  • Hassinen V, Vallinkoski VM, Issakainen S, Tervahauta A, Karenlampi S, Servomaa K (2009) Correlation of foliar MT2b expression with Cd and Zn concentrations in hybrid aspen (Populus tremula x tremuloides) grown in contaminated soil. Environ Pollut 157:922–930. doi:10.1016/j.envpol.2008.10.023

    Article  CAS  PubMed  Google Scholar 

  • Hassinen VH, Tervahauta AI, Schat H, Karenlampi SO (2011) Plant metallothioneins - metal chelators with ROS scavenging activity? Plant Biol 13:225–232. doi:10.1111/j.1438-8677.2010.00398.x

    Article  CAS  PubMed  Google Scholar 

  • Hsieh HM, Liu WK, Huang PC (1995) A novel stress-inducible metallothionein-like gene from rice. Plant Mol Biol 28:381–389. doi:10.1007/bf00020388

    Article  CAS  PubMed  Google Scholar 

  • Huang XQ, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9:868–877. doi:10.1101/gr.9.9.868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jack E, Hakvoort HWJ, Reumer A, Verkleij JAC, Schat H, Ernst WHO (2007) Real-time PCR analysis of metallothionein-2b expression in metallicolous and non-metallicolous populations of Silene vulgaris (Moench) Garcke. Environ Exp Bot 59:84–91. doi:10.1016/j.envexpbot.2005.10.005

    Article  CAS  Google Scholar 

  • Kagi JHR (1991) Overview of metallothionein. Methods Enzymol 205:613–626

    Article  CAS  PubMed  Google Scholar 

  • Lashermes P, Combes MC, Robert J, Trouslot P, D'Hont A, Anthony F, Charrier A (1999) Molecular characterisation and origin of the Coffea arabica L. genome. Mol Gen Genet 261:259–266

    Article  CAS  PubMed  Google Scholar 

  • Leszczyszyn OI, Imam HT, Blindauer CA (2013) Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 5:1146–1169. doi:10.1039/c3mt00072a

    Article  CAS  PubMed  Google Scholar 

  • Lima AA, Sagio SA, Chalfun-Junior A, Paiva LV (2011) In silico characterization of putative members of the coffee (Coffea arabica) ethylene signaling pathway. Genet Mol Res 10:1277–1289. doi:10.4238/vol10-2gmr1314

    Article  CAS  PubMed  Google Scholar 

  • Loebus J, Peroza EA, Bluethgen N, Fox T, Meyer-Klaucke W, Zerbe O, Freisinger E (2011) Protein and metal cluster structure of the wheat metallothionein domain gamma-E-c-1: the second part of the puzzle. J Biol Inorg Chem 16:683–694. doi:10.1007/s00775-011-0770-2

    Article  CAS  PubMed  Google Scholar 

  • Ma M, Lau PS, Jia YT, Tsang WK, Lam SKS, Tam NFY, Wong YS (2003) The isolation and characterization of Type 1 metallothionein (MT) cDNA from a heavy-metal-tolerant plant, Festuca rubra cv. Merlin. Plant Sci 164:51–60. doi:10.1016/s0168-9452(02)00334-5

    Article  CAS  Google Scholar 

  • Malavolta E (2006) Manual de Nutrição Mineral de, Plantas. edn. Agronômica Ceres, São Paulo

  • Marraccini P, Vinecky F, Alves GSC, Ramos HJO, Elbelt S, Vieira NG, Carneiro FA, Sujii PS, Alekcevetch JC, Silva VA, DaMatta FM, Ferrao MA, Leroy T, Pot D, Vieira LGE, da Silva FR, Andrade AC (2012) Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. J Exp Bot 63:4191–4212. doi:10.1093/jxb/ers103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, New York

    Google Scholar 

  • Martinez HEP, Souza RB, Alvarez VH, Menezes JFS, Neves YP, Oliveira JA, Alvarenga SP, Guimarães PTG (2004) Nutrição mineral, fertilidade do solo e produtividade do cafeeiro nas regiões de Patrocínio, Manhuaçu, Viçosa, São Sebastião do Paraíso e Guaxupé. Boletim Técnico. 2nd edn. EPAMIG, Viçosa

  • Melo EF, Fernandes-Brum CN, Pereira FJ, Castro EMD, Chalfun-Júnior A (2014) Anatomic and physiological modifications in seedlings of C. arabica cultivar Siriema under drought conditions. Cienc Agrotecnol 38:25–33

    Article  Google Scholar 

  • Moisyadi S, Stiles JI (1995) A cDNA-encoding a metallothionein I-like protein from coffee leaves (Coffea arabica). Plant Physiol 107:295–296. doi:10.1104/pp.107.1.295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondego JMC, Vidal RO, Carazzolle MF, Tokuda EK, Parizzi LP, Costa GGL, Pereira LFP, Andrade AC, Colombo CA, Vieira LGE, Pereira GAG, Co BCGP (2011) An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora. BMC Plant Biol 11. doi:10.1186/1471-2229-11-30

  • Navabpour S, Morris K, Allen R, Harrison E, A-H-Mackerness S, Buchanan-Wollaston V (2003) Expression of senescence-enhanced genes in response to oxidative stress. J Exp Bot 54:2285–2292. doi:10.1093/jxb/erg267

    Article  CAS  PubMed  Google Scholar 

  • Nishikim M, Appaji N, Yagi K (1972) Occurrence of superoxide anion in reaction of reduced phenazine methosulfate and molecular-oxygen. Biochem Biophys Res Commun 46:849–854. doi:10.1016/s0006-291x(72)80218-3

    Article  Google Scholar 

  • Parra G, Bradnam K, Rose AB, Korf I (2011) Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants. Nucleic Acids Res 39:5328–5337. doi:10.1093/nar/gkr043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peroza EA, Al Kaabi A, Meyer-Klaucke W, Wellenreuther G, Freisinger E (2009a) The two distinctive metal ion binding domains of the wheat metallothionein E-c-1. J Inorg Biochem 103:342–353. doi:10.1016/j.jinorgbio.2008.11.008

    Article  CAS  PubMed  Google Scholar 

  • Peroza EA, Schmucki R, Guentert P, Freisinger E, Zerbe O (2009b) The beta(E)-domain of wheat E(c)-1 metallothionein: a metal-binding domain with a distinctive structure. J Mol Biol 387:207–218. doi:10.1016/j.jmb.2009.01.035

    Article  CAS  PubMed  Google Scholar 

  • Poltronieri Y, Martinez HEP, Cecon PR (2011) Effect of zinc and its form of supply on production and quality of coffee beans. J Sci Food Agric 91:293–299. doi:10.1002/jsfa.4483

    Article  Google Scholar 

  • Porto BN, Alves JD, Magalhaes PC, Castro EM, Campos NA, Souza KRD, Magalhaes MM, Andrade CA, Santos MO (2013) Calcium-dependent tolerant response of cell wall in maize mesocotyl under flooding stress. J Agron Crop Sci 199:134–143. doi:10.1111/j.1439-037X.2012.00535.x

    Article  CAS  Google Scholar 

  • Pozza AAA, Guimarães PTG, Silva EB, Bastos ARR, Nogueira FD (2009) Adubação foliar de sulfato de zinco na produtividade e teores foliares de zinco e fósforo de cafeeiros arábica. Acta Sci Agron 31:49–57

    CAS  Google Scholar 

  • Rebijith KB, Asokan R, Ranjitha HH, Krishna V, Nirmalbabu K (2013) In silico mining of novel microRNAs from coffee (Coffea arabica) using expressed sequence tags. J Hortic Sci Biotechnol 88:325–337

    Article  CAS  Google Scholar 

  • Sadeghzadeh B (2013) A review of zinc nutrition and plant breeding. J Soil Sci Plant Nutr 13:905–927

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method - a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. P Natl Acad Sci USA 74:5463–5467. doi:10.1073/pnas.74.12.5463

  • Savchenko T, Walley JW, Chehab EW, Xiao Y, Kaspi R, Pye MF, Mohamed ME, Lazarus CM, Bostock RM, Dehesh K (2010) Arachidonic acid: an evolutionarily conserved signaling Molecule modulates plant stress signaling networks. Plant Cell 22:3193–3205. doi:10.1105/tpc.110.073858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schat H, Vooijs R, Kuiper E (1996) Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies of Silene vulgaris. Evolution 50:1888–1895. doi:10.2307/2410747

    Article  CAS  Google Scholar 

  • Schicht O, Freisinger E (2009) Spectroscopic characterization of Cicer arietinum metallothionein 1. Inorg Chim Acta 362:714–724. doi:10.1016/j.ica.2008.03.097

    Article  CAS  Google Scholar 

  • Sitnikova T, Rzhetsky A, Nei M (1995) Interior-branched and bootstrap tests of phylogenetic trees. Mol Biol Evol 12:319–333

    CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL-W - Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turchi A, Tamantini I, Camussi AM, Racchi ML (2012) Expression of a metallothionein A1 gene of Pisum sativum in white poplar enhances tolerance and accumulation of zinc and copper. Plant Sci 183:50–56. doi:10.1016/j.plantsci.2011.11.008

    Article  CAS  PubMed  Google Scholar 

  • Vieira PM, Guedes Coelho AS, Steindorff AS, Linhares de Siqueira SJ, Silva RN, Ulhoa CJ (2013) Identification of differentially expressed genes from Trichoderma harzianum during growth on cell wall of Fusarium solani as a tool for biotechnological application. BMC Genomics:14. doi:10.1186/1471-2164-14-177

  • Vinecky F, da Silva FR, Andrade AC (2012) In Silico analysis of cDNA libraries SH2 and SH3 for the identification of genes responsive to drought in coffee. Coffee Sci 7:1–19

    Google Scholar 

  • Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K (2004) Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol 135:1447–1456. doi:10.1104/pp.103.036384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou JM, Goldsbrough PB (1995) Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol Gen Genet 248:318–328. doi:10.1007/bf02191599

    Article  CAS  PubMed  Google Scholar 

  • Zhou GK, Xu YF, Li J, Yang LY, Liu JY (2006) Molecular analyses of the metallothionein gene family in rice (Oryza sativa L.). J Biochem Mol Biol 39:595–606

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Laboratory of Biochemistry and Molecular Physiology of Plants (LBFMP) and the Laboratory of Plant Molecular Physiology (LFMP) of the Federal University of Lavras and the National Council for Scientific and Technological Development (CNPq) for providing the fellowships, the Minas Gerais Research Foundation (FAPEMIG) and National Institute for Science and Technology for Coffee (INCT-Café) for funding this work and the Coordination of Improvement of Higher Education (CAPES) for providing grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Chalfun Jr..

Additional information

Responsible Editor: Michael A. Grusak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa, B.C.F., Silva, S.C., de Oliveira, R.R. et al. Zinc supply impacts on the relative expression of a metallothionein-like gene in Coffea arabica plants. Plant Soil 411, 179–191 (2017). https://doi.org/10.1007/s11104-016-2983-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2983-1

Keywords

Navigation