Skip to main content
Log in

Boron accumulation and tolerance in sweet basil (Ocimum basilicum L.) with green or purple leaves

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

There is a wide variability in plant tolerance to boron (B) toxicity, which is often associated with the ability to limit B accumulation. This study was conducted on two cultivars of sweet basil (Ocimum basilicum L.) with different B tolerance: ‘Tigullio’, less tolerant and with green leaves; ‘Red Rubin’, more tolerant and with purple leaves. The main goal was to verify whether the greater B tolerance of ‘Red Rubin’ is attributable to an exclusion mechanism.

Methods

In three greenhouse experiments, plants were grown hydroponically with solution B concentration ranging from 0.25 (control) to 25 mg L−1.

Results

Tissue B concentration increased with increasing B supply. Boron concentrations in root and leaf tissues were comparable in ‘Tigullio’ and ‘Red Rubin’ or even higher in the purple cultivar. Boron supply did not affect the leaf concentration of total phenolic compounds and other nutrients. Leaf concentrations of total phenols and rosmarinic acid were remarkably higher in ‘Red Rubin’ than in ‘Tigullio’.

Conclusions

The greater B tolerance of ‘Red Rubin’ was associated with the ability to withstand higher concentrations of this element in plant tissues rather than to reduced B accumulation in the shoot. The high phenolic content was thought to contribute to the B tolerance of ‘Red Rubin’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Apostol KG, Zwiazek JJ (2004) Boron and water uptake in jack pine (Pinus banksiana) seedlings. Environ Exp Bot 51:145–153

    Article  CAS  Google Scholar 

  • Bell CF, Gallagher BC, Lott KAK, Short EL, Walton L (1991) Boric acid complexes of phenolics acids. Polyhedron 10:613–618

    Article  CAS  Google Scholar 

  • Bingham FT, Strong JE, Rhoades JD, Keren R (1985) An application of the Maas-Hoffman salinity response model for boron toxicity. Soil Sci Soc Am J 49:672–674

    Article  CAS  Google Scholar 

  • Brown PH, Hu H, Roberts WG (1999) Redefining boron toxicity symptoms in some ornamentals. Slosson Report 95–98. http://slosson.ucdavis.edu/newsletters/Brown_199829071.pdf Accessed 31 January 2015

  • Carmassi G, Romani M, Diara C, Massa D, Maggini R, Incrocci L, Pardossi A (2013) Response to sodium chloride salinity and excess boron in greenhouse tomato grown in semi-closed substrate culture in a Mediterranean climate. J Plant Nutr 36:1025–1042

    Article  CAS  Google Scholar 

  • Cervilla LM, Blasco B, Rìos JJ, Rosales MA, Rubio-Wilhelmi MM, Saàchez-Rodrìguez E, Romero L, Ruiz JM (2009) Response of nitrogen metabolism to boron toxicity in tomato plants. Plant Biol 11:671–677

    Article  CAS  PubMed  Google Scholar 

  • del Carmen R-HM, Moreno DA, Carvajal M, del Carmen Martínez Ballesta M (2013) Interactive effects of boron and NaCl stress on water and nutrient transport in two broccoli cultivars. Funct Plant Biol 40:739–748

    Article  Google Scholar 

  • Dellantonio A, Schneider BU, Carter C, Fitz WJ, Grünewald H, Markovic M, Custovic H, Gruber V, Puschenreiter M, Repmann F, Zgorelec Z, Wenzel WW, Zerem N (2008) Environmental risks of farmed and barren alkaline coal ash landfills in Tuzla, Bosnia and Herzegovina. Environ Pollut 153:677–686

    Article  CAS  PubMed  Google Scholar 

  • Edelstein M, Ben-Hur M, Cohen RL, Burger Y, Ravina I (2005) Boron and salinity effects on grafted and non-grafted melon plants. Plant Soil 269:273–284

    Article  CAS  Google Scholar 

  • El-Sheikh AM, Ulrich A, Awad SK, Mawardy AE (1971) Boron tolerance of squash, melon, cucumber, and corn. J Am Soc Hortic Sci 96:536–537

    Google Scholar 

  • Eraslan F, Inal A, Gunes A, Alpaslan M (2007) Boron toxicity alters nitrate reductase activity, proline accumulation, membrane permeability, and mineral constituents of tomato and pepper plants. J Plant Nutr 30:981–994

    Article  CAS  Google Scholar 

  • Francois LE (1984) Effect of excess boron on tomato yield, fruit size and vegetative growth. J Am Soc Hortic Sci 109:322–324

    CAS  Google Scholar 

  • Francois LE (1986) Effect of excess boron on broccoli, cauliflower, and radish. HortSci 111:494–498

    CAS  Google Scholar 

  • Francois LE (1991) Yield and quality responses of garlic and onion to excess boron. HortSci 26:547–549

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Grace SC, Logan BA (2000) Energy dissipation and radical scavenging by the plant phenylopropanoid pathway. Philos Trans R Soc Lond 35:1499–1510

    Article  Google Scholar 

  • Guidi L, Degl'Innocenti E, Carmassi G, Massa D, Pardossi A (2011) Effects of boron on leaf chlorophyll fluorescence of greenhouse tomato grown with saline water. Environ Exp Bot 73:57–63

    Article  CAS  Google Scholar 

  • Günes A, Alpaslan M (2008) Boron uptake and toxicity in maize genotypes in relation to boron and phosphorus supply. J Plant Nutr 23:541–550

    Article  Google Scholar 

  • Hale KL, McGrath S, Lombi E, Stack S, Terry N, Pickering IJ, George GN, Pilon-Smits EAH (2001) Molybdenum sequestration in Brassica: a role for anthocyanins? Plant Physiol 126:1391–1402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hale KL, Tufan HA, Pickering IJ, George GN, Terry N, Pilon M, Pilon-Smits EAH (2002) Anthocyanins facilitate tungsten accumulation in Brassica. Physiol Plant 836(116):351–358

    Article  Google Scholar 

  • Hayes JE, Reid RJ (2004) Boron tolerance in barley is mediated by efflux of boron from the roots. Plant Physiol 136:3376–3382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inal A, Tarakcioglu C (2001) Effects of nitrogen forms on growth, nitrate accumulation, membrane permeability, and nitrogen use efficiency of hydroponically grown bunch onion under boron deficiency and toxicity. J Plant Nutr 24:1521–1534

    Article  CAS  Google Scholar 

  • Javanmardi J, Khalighi A, Kashi A, Bais HP, Vivanco JM (2002) Chemical characterization of basil (Ocimum basilicum L.) found in local accessions and used in traditional medicines in Iran. J Agric Food Chem 50:5878–5883

    Article  CAS  PubMed  Google Scholar 

  • Kang HM, Saltveit ME (2002) Antyoxidant capacity of lettuce leaf tissue increases after wounding. J Agric Food Chem 50:7536–7541

    Article  CAS  PubMed  Google Scholar 

  • Kaya G, Tuna AL, Dikilitas M, Ashraf M, Koskeroglu S, Guneri M (2009) Supplementary phosphorus can alleviate boron toxicity in tomato. Sci Hortic 121:284–288

    Article  CAS  Google Scholar 

  • Keles Y, Öncel Y, Yenice N (2004) Relationship between boron content and antioxidant compounds in Citrus leaves taken from fields with different water source. Plant Soil 265:345–353

    Article  CAS  Google Scholar 

  • Kiferle C, Lucchesini M, Mensuali Sodi A, Maggini R, Raffaelli A, Pardossi A (2011) Rosmarinic acid content in basil plants grown in vitro and in hydroponics. Cent Eur J Biol 6:946–957

    CAS  Google Scholar 

  • Kiferle C, Lucchesini M, Maggini R, Pardossi A, Mensuali Sodi A (2014) Gas exchanges, growth and rosmarinic acid production of in vitro sweet basil (Ocimum basilicum L.). Biol Plant 58:601–610

    Article  CAS  Google Scholar 

  • Landi M, Degl'innocenti E, Pardossi A, Guidi L (2012) Antioxidant and photosynthetic responses in plants under boron toxicity: a review. Am J Agric Biol Sci 7:255–270

    Article  CAS  Google Scholar 

  • Landi M, Pardossi A, Remorini D, Guidi L (2013a) Antioxidant and photosynthetic response of a purple-leafed and a green-leafed cultivar of sweet basil (Ocimum basilicum) to boron excess. Environ Exp Bot 85:64–75

    Article  CAS  Google Scholar 

  • Landi M, Remorini D, Pardossi A, Guidi L (2013b) Boron excess affects photosynthesis and antioxidant apparatus of greenhouse Cucurbita pepo and Cucumis sativus. J Plant Res 26:775–786

    Article  Google Scholar 

  • Landi M, Guidi L, Pardossi A, Tattini M, Gould KS (2014) Photoprotection by foliar anthocyanins mitigates effects of boron toxicity in sweet basil (Ocimum basilicum). Planta 240:941–953

    Article  CAS  PubMed  Google Scholar 

  • Landi M, Tattini M, Gould KS (2015) Multiple functional roles of anthocyanins in plant-environment interactions. Environ Exp Bot. doi:10.1016/j.envexpbot.2015.05.012

  • Maas EV (1984) Salt tolerance of plants. In: Christie BR (ed) Handbook of plant science. CRC Press, Cleveland

    Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance - current assessment. J Irrig Drain Eng 103:115–134

    Google Scholar 

  • Magán JJ, Gallardo M, Thompson RB, Lorenzo P (2008) Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions. Agric Water Manag 95:1041–1055

    Article  Google Scholar 

  • Mahboobi H, Yücel M, Öktem HA (2002) Nitrate reductase and glutamate dehydrogenase activities of resistant and sensitive cultivars of wheat and barley under boron toxicity. J Plant Nutr 25:1829–1837

    Article  CAS  Google Scholar 

  • Majkowska-Gadomska J, Arcichowska K, Wierzbicka B (2009) Nitrate content of the edible parts of vegetables and spice plants. Acta Sci Pol Hort Cultus 8:25–35

    Google Scholar 

  • Makri O, Kintzios K (2007) Ocimum sp. (Basil): botany, cultivation, pharmaceutical properties, and biotechnology. J Herbs Spices Med Plants 13:123–150

    Article  CAS  Google Scholar 

  • Nable RO, Bañuelos GS, Paull JG (1997) Boron toxicity. Plant Soil 193:181–198

    Article  CAS  Google Scholar 

  • Nguyen P, Niemeyer E (2008) Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.). J Agric Food Chem 56:8685–8691

    Article  CAS  PubMed  Google Scholar 

  • Ochiai K, Uemura S, Shimizu A, Okumoto Y, Matoh T (2008) Boron toxicity in rice (Oryza sativa L.). I. Quantitative trait locus (QTL) analysis of tolerance to boron toxicity. Theor Appl Genet 117:125–133

    Article  CAS  PubMed  Google Scholar 

  • Orsini F, De Pascale S (2007) Daily variation in leaf nitrate content of two cultivars of hydroponically grown basil. Acta Horticult 747:203–210

    CAS  Google Scholar 

  • Pang Y, Li L, Ren F, Lu P, Pi W, Cai J, Xin L, Zhang J, Chen J, Wang X (2010) Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis. J Genet Genomics 37:389–397

    Article  CAS  PubMed  Google Scholar 

  • Petersen M, Simmonds MSJ (2003) Molecules of interest: rosmarinic acid. Phytochemistry 62:121–125

    Article  CAS  PubMed  Google Scholar 

  • Rees R, Robinson BH, Menon M, Lehmann E, Gunthardt-Goerg MS, Schulin R (2011) Boron accumulation and toxicity in hybrid poplar (Popolus nigra x Euroamericana). Environ Sci Technol 45:10536–10543

    Article  Google Scholar 

  • Reid R (2007) Identification of boron transporter genes likely to be responsible for tolerance to boron toxicity in wheat and barley. Plant Cell Physiol 48:1673–1678

    Article  CAS  PubMed  Google Scholar 

  • Reid R (2014) Understanding the boron transport network in plants. Plant Soil 385:1–13

    Article  CAS  Google Scholar 

  • Reid R, Fitzpatrick K (2009) Influence of leaf tolerance mechanisms and rain on boron toxicity in barley and wheat. Plant Physiol 151:413–420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reid R, Hajes JE, Post A, Stangoulis JCR, Graham RD (2004) A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ 25:1405–1414

    Article  Google Scholar 

  • Rojas-Lillo Y, Alberdi M, Acevedo P, Inostroza-Blancheteau C, Rengel Z, Mora MDLL, Reyes-Díaz M (2014) Manganese toxicity and UV-B radiation differentially influence the physiology and biochemistry of highbush blueberry (Vaccinium corymbosum) cultivars. Funct Plant Biol 41:156–167

    Article  CAS  Google Scholar 

  • Santamaria P (2006) Nitrate in vegetables: toxicity, content, intake and EC regulation. J Sci Food Agric 86:10–17

    Article  CAS  Google Scholar 

  • Schurr U (1998) Xylem sap sampling: new approaches to an old topic. Trends Plant Sci 3:293–298

    Article  Google Scholar 

  • Schurr U, Schulze ED (1995) The concentration of xylem sap constituents in root exudate, and in sap from intact, transpiring castor bean plants (Ricinus communis L.). Plant Cell Environ 18:409–420

    Article  CAS  Google Scholar 

  • Sgherri C, Cecconami S, Pinzino C, Navari-Izzo F, Izzo R (2010) Levels of antioxidants and nutraceuticals in basil grown in hydroponics and soil. Food Chem 123:416–422

    Article  CAS  Google Scholar 

  • Simón I, Díaz-López L, Gimeno V, Nieves M, Pereira WE, Martínez V, Lidon V, García-Sánchez F (2013) Effects of boron excess in nutrient solution on growth, mineral nutrition, and physiological parameters of Jatropha curcas seedlings. J Plant Nutr Soil Sci 176:165–174

    Article  Google Scholar 

  • Smith TE, Grattan SR, Grieve CM, Poss JA, Suarez DL (2010) Salinity’s influence on boron toxicity in broccoli: II. Impacts on boron uptake, uptake mechanisms and tissue ion relations. Agric Water Manag 97:783–791

    Article  Google Scholar 

  • Smith TE, Grattan SR, Grieve CM, Poss JA, Läuchli AE, Suarez DL (2013) pH dependent salinity-boron interactions impact yield, biomass, evapotranspiration and boron uptake in broccoli (Brassica oleracea L.). Plant Soil 370:541–554

    Article  CAS  Google Scholar 

  • Sonneveld C, Voogt W (2009) Plant nutrition of greenhouse crops. Springer, New York

    Book  Google Scholar 

  • Stiles A, Bautista D, Atalay E, Babaoglu M, Terry N (2010) Mechanisms of boron tolerance and accumulation in plants: a physiological comparison of the extremely boron-tolerant plant species, Puccinelliadistans, with the moderately boron-tolerant Gypsophila arrostil. Environ Sci Technol 44:7089–7095

    Article  CAS  PubMed  Google Scholar 

  • Tattini M, Landi M, Brunetti C, Giordano C, Remorini GKS, Guidi L (2014) Epidermal coumaroyl anthocyanins protect sweet basil against excess light stress: multiple consequences of light attenuation. Physiol Plant 152:585–598

    Article  CAS  PubMed  Google Scholar 

  • Tesi R, Ghiselli L, Tallarico R (1995) Accumulo di nitrati nel basilico (Ocimum basilicum L.) in rapporto a diversi fattori colturali. Italus Hortus 2:43–48

    Google Scholar 

  • Umar AS, Iqbal M (2007) Nitrate accumulation in plants, factors affecting the process, and human health implications. a review. Agron Sustain Dev 27:45–57

    Article  Google Scholar 

  • Vlamis J, Ulrich A (1973) Boron tolerance of sugar beets in relation to the growth and boron content of tissues. J Am Soc Sugar Beet Technol 17:280–288

    Article  CAS  Google Scholar 

  • Wang R, Liu G, Liu L, Jiang C (2014) Relationship between leaf chlorosis and different boron forms in Trifoliate orange seedlings under excessive boron supply. Soil Sci Plant Nutr 60:325–332

    Article  CAS  Google Scholar 

  • Wimmer MA, Goldbach HE (2007) Boron in the apoplast of higher plants. In: Sattelmacher A, Horst A (eds) The apoplast of higher plants: compartment of storage, transport and reactions. Springer, New York, pp 19–32

    Chapter  Google Scholar 

  • Zheljazkov VD, Warman PR (2003) Application of high Cu compost to Swiss chard and basil. Sci Total Environ 302:13–26

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by MIUR-PRIN 2009 (Ministero dell’Istruzione, dell’Università e della Ricerca, Italy, Project “Physiological response of vegetables crops to excess boron”). We thank the reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pardossi.

Additional information

Responsible Editor: Yong Chao Liang .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pardossi, A., Romani, M., Carmassi, G. et al. Boron accumulation and tolerance in sweet basil (Ocimum basilicum L.) with green or purple leaves. Plant Soil 395, 375–389 (2015). https://doi.org/10.1007/s11104-015-2571-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2571-9

Keywords

Navigation