Skip to main content
Log in

Quantification and FTIR characterization of dissolved organic carbon and total dissolved nitrogen leached from litter: a comparison of methods across litter types

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Quantification and characterization of dissolved organic matter (DOM) leached from leaf litter in the laboratory may well depend on the method used to leach the litter. However, we lack a comparative assessment of the available methods. Here, we test how: i) four commonly used methods to leach plant litter, ii) cutting of the litter, and iii) litter species affect the quantity and composition of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) leached using fourier transform mid-infrared spectroscopy (FTIR).

Methods

We tested how soaking litter in water, dripping water over litter, and shaking litter in two different volumes of water affected leaching of both cut and whole leaves of alfalfa (Medicago sativa), ash (Fraxinus excelsior), big bluestem grass (Andropogon gerardii), oak (Quercus macrocarpa) and pine (Pinus ponderosa) litter. We measured DOC and TDN on the leachate to quantify how much DOM was leached by each method. We used the DOC:TDN ratio and FTIR to analyze the composition of the DOM leached.

Results

The leaching method and cutting had an impact on the amount of DOM leached from the litter. The amount of DOM leached was also affected by the litter species and its interaction with leaching method and cutting. FTIR analysis identified the same main functional groups of plant litter leachates across all of the litter species. Leaching method, cutting and litter type affected the concentration of the leachate and the resolution of the FTIR spectral data but not the relative contribution of the main functional groups.

Conclusions

Methods of leaching should be chosen consistently with experimental objectives and type of litter examined. The leaching method, cutting of the litter and litter species should be taken into consideration when comparing data on DOM amounts obtained from different leaching methods but the leachate consists of similar functional group components across method, cutting and litter species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bowen SR, Gregorich EG, Hopkins DW (2009) Biochemical properties and biodegradation of dissolved organic matter from soils. Biol Fertil Soils 45(7):733–742. doi:10.1007/s00374-009-0387-6

    Article  CAS  Google Scholar 

  • Calderon FJ, McCarty GW, Reeves JB (2006) Pyrolisis-MS and FT-IR analysis of fresh and decomposed dairy manure. J Anal Appl Pyrolysis 76(1–2):14–23. doi:10.1016/j.jaap.2005.06.009

    Article  CAS  Google Scholar 

  • Calderon FJ, Reeves JB, Collins HP, Paul EA (2011) Chemical differences in soil organic matter fractions determined by diffuse-reflectance Mid-infrared spectroscopy. Soil Sci Soc Am J 75(2):568–579. doi:10.2136/sssaj2009.0375

    Article  CAS  Google Scholar 

  • Cheever BM, Webster JR, Bilger EE, Thomas SA (2013) The relative importance of exogenous and substrate-derived nitrogen for microbial growth during leaf decomposition. Ecology 94(7):1614–1625. doi:10.1890/12-1339.1

    Article  CAS  PubMed  Google Scholar 

  • Cleveland CC, Neff JC, Townsend AR, Hood E (2004) Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems 7(3):275–285. doi:10.1007/s10021-003-0236-7

    Article  CAS  Google Scholar 

  • Corrigan C, Oelbermann M (2013) Mass and nutrient loss of leaf litter collecting in littertraps: an in situ and Ex situ study. For Sci 59(4):484–493. doi:10.5849/forsci.12-016

    Google Scholar 

  • Cuss CW, Gueguen C (2013) Distinguishing dissolved organic matter at its origin: size and optical properties of leaf-litter leachates. Chemosphere 92(11):1483–1489. doi:10.1016/j.chemosphere.2013.03.062

    Article  CAS  PubMed  Google Scholar 

  • Don A, Kalbitz K (2005) Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages. Soil Biol Biochem 37(12):2171–2179. doi:10.1016/j.soilbio.2005.03.019

    Article  CAS  Google Scholar 

  • Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156(3780):1322–1335. doi:10.1126/science.156.3780.1322

    Article  CAS  PubMed  Google Scholar 

  • Fellman JB, Petrone KC, Grierson PF (2013) Leaf litter age, chemical quality, and photodegradation control the fate of leachate dissolved organic matter in a dryland river. J Arid Environ 89:30–37. doi:10.1016/j.jaridenv.2012.10.011

    Article  Google Scholar 

  • Gallo ME, Lauber CL, Cabaniss SE, Waldrop MP, Sinsabaugh RL, Zak DR (2005) Soil organic matter and litter chemistry response to experimental N deposition in northern temperate deciduous forest ecosystems. Glob Chang Biol 11(9):1514–1521. doi:10.1111/j.1365-2486.2005.001001.x

    Article  Google Scholar 

  • Gimenes KZ, da Cunha-Santino MB, Bianchini I (2013) Cellulase activity in anaerobic degradation of aquatic macrophytes tissues. Fundam Appl Limnol 183(1):27–39. doi:10.1127/1863-9135/2013/0426

    Article  CAS  Google Scholar 

  • Gressel N, McGrath AE, McColl JG, Powers RF (1995) Spectroscopy of aqueous extracts of forest litter.1. Suitability of methods. Soil Sci Soc Am J 59(6):1715–1723

    Article  CAS  Google Scholar 

  • Hansson K, Kleja DB, Kalbitz K, Larsson H (2010) Amounts of carbon mineralised and leached as DOC during decomposition of Norway spruce needles and fine roots. Soil Biol Biochem 42(2):178–185. doi:10.1016/j.soilbio.2009.10.013

    Article  CAS  Google Scholar 

  • He Z, Mao J, Honeycutt CW, Ohno T, Hunt JF, Cade-Menun BJ (2009) Characterization of plant-derived water extractable organic matter by multiple spectroscopic techniques. Biol Fertil Soils 45(6):609–616. doi:10.1007/s00374-009-0369-8

    Article  Google Scholar 

  • He X, Xi B, Wei Z, Guo X, Li M, An D, Liu H (2011a) Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste. Chemosphere 82(4):541–548. doi:10.1016/j.chemosphere.2010.10.057

    Article  CAS  PubMed  Google Scholar 

  • He Z, Honeycutt CW, Zhang H (2011b) Elemental and fourier transform-infrared spectroscopic analysis of water- and pyrophosphate-extracted soil organic matter. Soil Sci 176(4):183–189. doi:10.1097/SS.0b013e318212865c

    Article  CAS  Google Scholar 

  • He Z, Honeycutt CW, Olanya O, Larkin R, Halloran J, Frantz J (2012) Comparison of soil phosphorus status and organic matter composition in potato fields with different crop rotation systems. In: He Z, Larkin R, Honeycutt CW (eds) Sustainable potato production: global case studies. Springer, Netherlands, pp 61–79

    Chapter  Google Scholar 

  • Jones DL, Willett VB, Stockdale EA, Macdonald AJ, Murphy DV (2012) Molecular weight of dissolved organic carbon, nitrogen, and phenolics in grassland soils. Soil Sci Soc Am J 76(1):142–150. doi:10.2136/sssaj2011.0252

    Article  CAS  Google Scholar 

  • Kaiser M, Ellerbrock RH (2005) Functional characterization of soil organic matter fractions different in solubility originating from a long-term field experiment. Geoderma 127(3–4):196–206. doi:10.1016/j.geoderma.2004.12.002

    Article  CAS  Google Scholar 

  • Kaiser K, Guggenberger G (2000) The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org Geochem 31(7–8):711–725. doi:10.1016/s0146-6380(00)00046-2

    Article  CAS  Google Scholar 

  • Kaiser M, Ellerbrock RH, Gerke HH (2007) Long-term effects of crop rotation and fertilization on soil organic matter composition. Eur J Soil Sci 58(6):1460–1470. doi:10.1111/j.1365-2389.2007.00950.x

    Article  CAS  Google Scholar 

  • Kalbitz K, Kaiser K, Bargholz J, Dardenne P (2006) Lignin degradation controls the production of dissolved organic matter in decomposing foliar litter. Eur J Soil Sci 57(4):504–516. doi:10.1111/j.1365-2389.2006.00797.x

    Article  CAS  Google Scholar 

  • Kiikkila O, Kitunen V, Spetz P, Smolander A (2012) Characterization of dissolved organic matter in decomposing Norway spruce and silver birch litter. Eur J Soil Sci 63(4):476–486. doi:10.1111/j.1365-2389.2012.01457.x

    Article  Google Scholar 

  • Klotzbucher T, Kaiser K, Guggenberger G, Gatzek C, Kalbitz K (2011) A new conceptual model for the fate of lignin in decomposing plant litter. Ecology 92(5):1052–1062

    Article  PubMed  Google Scholar 

  • Landgraf D, Leinweber P, Makeschin F (2006) Cold and hot water-extractable organic matter as indicators of litter decomposition in forest soils. J Plant Nutr Soil Sci 169(1):76–82. doi:10.1002/jpin.200521711

    Article  CAS  Google Scholar 

  • Magill AH, Aber JD (2000) Dissolved organic carbon and nitrogen relationships in forest litter as affected by nitrogen deposition. Soil Biol Biochem 32(5):603–613. doi:10.1016/s0038-0717(99)00187-x

    Article  CAS  Google Scholar 

  • Movasaghi Z, Rehman S, Rehman IU (2008) Fourier Transform Infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43(2):134–179. doi:10.1080/05704920701829043

    Article  CAS  Google Scholar 

  • Neff JC, Asner GP (2001) Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems 4(1):29–48. doi:10.1007/s100210000058

    Article  CAS  Google Scholar 

  • Nkhili E, Guyot G, Vassal N, Richard C (2012) Extractability of water-soluble soil organic matter as monitored by spectroscopic and chromatographic analyses. Environ Sci Pollut Res 19(6):2400–2407. doi:10.1007/s11356-012-0752-0

    Article  CAS  Google Scholar 

  • Nykvist N (1962) Leaching and decomposition of litter V. Experiments on leaf litter of Alnus glutinosa, Fagus silvatica and Quercus robur. Oikos 13(2):232–248. doi:10.2307/3565087

    Article  Google Scholar 

  • Oren A, Chefetz B (2012) Sorptive and desorptive fractionation of dissolved organic matter by mineral soil matrices. J Environ Qual 41(2):526–533. doi:10.2134/jeq2011.0362

    Article  CAS  PubMed  Google Scholar 

  • Peltre C, Thuriès L, Barthès B, Brunet D, Morvan T, Nicolardot B, Parnaudeau V, Houot S (2011) Near infrared reflectance spectroscopy: a tool to characterize the composition of different types of exogenous organic matter and their behaviour in soil. Soil Biol Biochem 43(1):197–205. doi:10.1016/j.soilbio.2010.09.036

    Article  CAS  Google Scholar 

  • Qualls RG, Haines BL (1991) Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology 72(1):254–266. doi:10.2307/1938919

    Article  Google Scholar 

  • Socrates G (1994) Infrared characteristic group frequencies, 2nd edn. Wiley, West Sussex

    Google Scholar 

  • Stewart D (1996) Fourier transform infrared microspectroscopy of plant tissues. Appl Spectrosc 50(3):357–365. doi:10.1366/0003702963906384

    Article  CAS  Google Scholar 

  • Strobel BW, Hansen HCB, Borggaard OK, Andersen MK, Raulund-Rasmussen K (2001) Composition and reactivity of DOC in forest floor soil solutions in relation to tree species and soil type. Biogeochemistry 56(1):1–26. doi:10.1023/a:1011934929379

    Article  CAS  Google Scholar 

  • Swift MJ, Heal, O.W., Anderson, J.M. (1979) Decomposition in Terrestrial Ecosystems, vol 5. Studies in Ecology. University of California Press

  • Uselman SM, Qualls RG, Lilienfein J (2012) Quality of soluble organic C, N, and P produced by different types and species of litter: root litter versus leaf litter. Soil Biol Biochem 54:57–67. doi:10.1016/j.soilbio.2012.03.021

    Article  CAS  Google Scholar 

  • Van Soest PJ, Wine RH (1968) Determination of lignin and cellulose in acid-detergent fiber with permanganate. J Assoc Off Anal Chem 51(4):780

    Google Scholar 

  • Wallenstein MD, Hess AM, Lewis MR, Steltzerae H, Ayres E (2010) Decomposition of aspen leaf litter results in unique metabolomes when decomposed under different tree species. Soil Biol Biochem 42(3):484–490. doi:10.1016/j.soilbio.2009.12.001

    Article  CAS  Google Scholar 

  • Wieder WR, Cleveland CC, Townsend AR (2008) Tropical tree species composition affects the oxidation of dissolved organic matter from litter. Biogeochemistry 88(2):127–138. doi:10.1007/s10533-008-9200-0

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank D. Reuss, C. Pinney and B. Cesar at the Ecocore laboratory for their assistance. This work was funded by the NSF-DEB grant #0918482.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Soong.

Additional information

Responsible Editor: Alfonso Escudero

Disclaimer and EEO/Non-discrimination statement

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soong, J.L., Calderón, F.J., Betzen, J. et al. Quantification and FTIR characterization of dissolved organic carbon and total dissolved nitrogen leached from litter: a comparison of methods across litter types. Plant Soil 385, 125–137 (2014). https://doi.org/10.1007/s11104-014-2232-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2232-4

Keywords

Navigation