Skip to main content

Advertisement

Log in

Signal effects of the lectin from the associative nitrogen-fixing bacterium Azospirillum brasilense Sp7 in bacterial–plant root interactions

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Azospirillum brasilense, which has the potential to stimulate plant growth, belongs to the group of plant growth-promoting bacteria. The lectin found on the surface of A. brasilense strain Sp7 has the ability to bind specific carbohydrates and ensures adhesion of the bacteria to the root surface. The aim of this work was to investigate possible inductive effects of the Sp7 lectin on the plant cell signal systems.

Methods

Enzyme-linked immunosorbent assay, spectrophotometry, and thin-layer and gas–liquid chromatography were used to determine the content of signal intermediates in the cells of wheat root seedlings. Laser scanning confocal microscopy was used to examine the localization of fluorescently labeled lectin on the plant cell.

Results

The Sp7 lectin acted on the signal system components in wheat seedling roots by regulating the contents of cAMP, nitric oxide, diacylglycerol, and salicylic acid, as well as by modifying the activities of superoxide dismutase and lipoxygenase. The revealed cell membrane localization of the lectin is of deciding importance for its signal function.

Conclusions

The results of the study suggest that the A. brasilense Sp7 lectin acts as a signal molecule involved in the interaction of growth-promoting rhizobacteria with plant roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed N (2010) Physiological and molecular basis of Azospirillum-Arabidopsis interaction. Dissertation, University of Wuerzburg

  • Alen’kina SA, Petrova LP, Nikitina VE (1998) Obtaining and characterization of a mutant of Azospirillum brasilense Sp7 defective in lectin activity. Microbiology 67:649–653

    Google Scholar 

  • Alen’kina SA, Payusova OA, Nikitina VE (2006) Effect of Azospirillum lectins on the activities of wheat-root hydrolytic enzymes. Plant Soil 283:147–151

    Article  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Antonyuk LP, Evseeva NV (2006) Wheat lectin as a factor in plant–microbial communication and a stress response protein. Microbiology 75:470–475

    Article  CAS  Google Scholar 

  • Axelrod B, Cheesebrough TM, Laakso S (1981) Lipoxygenase from soybeans. EC 1.13.11.12 linoleate:oxygen oxidoreductase. Methods Enzymol 71:441–451

    Article  CAS  Google Scholar 

  • Babithaa MP, Bhath SG, Prakasha HS, Shettya HS (2002) Different induction of superoxide dismutase in downy mildew-resistant and -susceptible genotypes of pearl millet. Plant Pathol 51:480–486

    Article  Google Scholar 

  • Baldani JI, Baldani VLD (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. An Acad Bras Cienc 77:549–579

    Article  CAS  PubMed  Google Scholar 

  • Baniaghil N, Arzanesh MH, Ghorbanli M, Shahbazi M (2013) The effect of plant growth promoting rhizobacteria on growth parameters, antioxidant enzymes and microelements of Canola under salt stress. J Appl Environ Biol Sci 3:17–27

    Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, de-Bashan LE (2002a) Reduction of bacterial speck (Pseudomonas syringae pv. tomato) of tomato by combined treatments of plant growth-promoting bacterium, Azospirillum brasilense, streptomycin sulfate, and chemo-thermal seed treatment. Eur J Plant Pathol 10:821–829

    Article  Google Scholar 

  • Bashan Y, de-Bashan LE (2002b) Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 68:2637–2643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H (1989) Factors affecting adsorption of Azospirillum brasilense Cd to root hairs as compared with root surface of wheat. Can J Microbiol 35:936–944

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi А, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blight EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov AA, Petrova LY, Nazarenko EL, Kovalchuk SN, Kozhemyako VB, Rasskazov VA (2007) Molecular and biological characterization of a mannan-binding lectin from the holothurian Apostichopus japonica. Glycobiology 12:1284–1298

    Article  Google Scholar 

  • Cali JJ, Zwaagstra JC, Mons N (1994) Type VIII adenylyl cyclase. A Ca2+/calmodulin-stimulated enzyme expressed in discrete regions of rat brain. J Biol Chem 269:12190–12195

    CAS  PubMed  Google Scholar 

  • Castellanos T, Ascencio F, Bashan Y (1998) Cell-surface lectins of Azospirillum spp. Curr Microbiol 36:241–244

    Article  CAS  PubMed  Google Scholar 

  • Catinot J, Buchala A, Abou-Mansour E, Métraux J-P (2008) Salicylic acid production in re-sponse to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett 582:473–478

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Iyengar R (1993) Inhibition of cloned adenylyl cyclases by mutant-activated Gi-alpha and specific suppression of type 2 adenylyl cyclase inhibition by phorbol ester treatment. J Biol Chem 268:2253–2256

    Google Scholar 

  • Chen C, Belanger RR, Benhamou N, Paulitz TC (1999) Role of salicylic acid in systemic resistance induced by Pseudomonas spp. against Pythium aphanidermatum in cucumber roots. Eur J Plant Pathol 105:477–486

    Article  CAS  Google Scholar 

  • Chernyshova MP, Alen’kina SA, Nikitina VE, Ignatov VV (2005) Extracellular proteolytic enzymes of Azospirillum brasilense strain Sp7 and regulation of their activity by homologous lectin. Appl Biochem Microbiol 41:390–393

    Article  CAS  Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47:289–297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Christie WW (1993) Preparation of ester derivatives of fatty acids for chromatographic analysis, in Advances in Lipid Methodology—Two. Oily Press, Dundee

    Google Scholar 

  • Coventry HS, Dubery IA (2001) Lipopolysaccharides from Burkholderia cepacia contribute to an enhanced defensive capacity and the induction of pathogenesis-related proteins in Nicotianae tabacum. Physiol Mol Plant Pathol 58:149–158

    Article  CAS  Google Scholar 

  • Creus MC, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221:297–303

    Article  CAS  PubMed  Google Scholar 

  • Dadon T, Bar Nun N, Mayer AM (2004) A factor from Azospirillum brasilense inhibits germination and radicle growth of Orobanche aegyptiaca. Isr J Plant Sci 52:83–86

    Article  CAS  Google Scholar 

  • Darbre A (1989) Prakticheskaya khimiya belka (Practical protein chemistry). Izdatel’stvo Mir, Moscow

    Google Scholar 

  • De Meyer G, Audenaert K, Hofte M (1999) Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a expression. Eur J Plant Pathol 105:513–517

    Article  Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266:1247–1250

    Article  CAS  PubMed  Google Scholar 

  • Dmitriev AP (2003) Signal molecules for plant defense responses to biotic stress. Russ J Plant Physiol 50:417–425

    Article  CAS  Google Scholar 

  • Dyakov YuT, Ozeretskovskaya OL, Dzhavakhiya VG, Bagirova SF (2001) Obshchaya i molekulyarnaya fitopatologiya. Uchebnoye posobiye (General and molecular phytopathology: study guide). Izdatel’stvo Obshchestva fitopatologov, Moscow (in Russian)

  • Echdat Y, Ofek I, Yachow-Yan Y, Sharon N, Mirelman D (1978) Isolation of mannose-specific lectin from E. coli and its role in the adherence of the bacterial to epithelial cells. Biochem Biophys Res Commun 85:1551–1559

    Article  Google Scholar 

  • Flores T, Todd CD, Tovar-Mendez A, Dhanoa PK, Corra-Aragunde N, Hoyos ME, Brownfield DM, Mullen RT, Lamattina L, Polacco JC (2008) Arginase-negative mutant of Arabidopsis exhibit increased nitric oxide signalling in root development. Plant Physiol 147:1936–1946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids form animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Geetha HM, Shetty HS (2002) Expression of oxidative burst in cultured cells of pearl millet cultivars against Sclerospora graminicola inoculation and elicitor treatment. Plant Sci 163:653–660

    Article  CAS  Google Scholar 

  • Glyan’ko AK, Vasil’eva GG (2010) Reactive oxygen and nitrogen species in legume–rhizobial symbiosis (review). Appl Biochem Microbiol 46:15–22

    Article  Google Scholar 

  • Glyan’ko AK, Akimova GM, Sokolova MG, Makarova LE, Vasil’eva GG (2007) The defense and regulatory mechanisms during development of legume–rhizobial symbiosis. Appl Biochem Microbiol 43:260–267

    Article  Google Scholar 

  • Glyan’ko AK, Mitanova NB, Stepanov AV (2009) Physiological role of nitric oxide (NO) at vegetative organisms. J Stress Physiol Biochem 5:33–52

    Google Scholar 

  • Hanton SL, Brandizzi F (2006) Fluorescent proteins as markers in the plant secretory pathway. Microsc Res Tech 69:152–159

    Article  CAS  PubMed  Google Scholar 

  • Imberty A, Wimmerova M, Mitchell E, Gilboa-Garber N (2004) Structures of the lectins from Pseudomonas aeruginosa: insight into the molecular basis for host glycan recognition. Microbiol Infect 6:221–228

    Article  CAS  Google Scholar 

  • Kawakita K, Doke N (1994) Involvement of a GTP-binding protein in signal transduction in potato tubers treated with the fungal elicitor from Phytophthora infestans. Plant Sci 96:81–86

    Article  CAS  Google Scholar 

  • Keyts M (1975) Technika lipldologii. Izdatel’stvo Mir, Moscow

    Google Scholar 

  • Krasilnikov MA (2000) Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry 65:59–67

    CAS  PubMed  Google Scholar 

  • Kuzniak E, Sklodowska M (2004) The effect of Botrytis cinerea infection on the antioxidant profile of mitochondria from tomato leaves. J Exp Bot 55:605–612

    Article  CAS  PubMed  Google Scholar 

  • Lakhtin VM (1989) Lectins and aspects of their study. Microbiol J 51:69–74

    Google Scholar 

  • Levanony H, Bashan Y, Romano B, Klein E (1989) Ultrastructural localization and identification of Azospirillum brasilense Cd on and within wheat root by immunogold labeling. Plant Soil 117:207–218

    Article  Google Scholar 

  • Lomovatskaya LA, Romanenko AS, Filinova NV (2008) Plant adenilate cyclases. J Recept Signal Transduct Res 28:531–542

    Article  CAS  PubMed  Google Scholar 

  • Malamy J, Carr JP, Klesing DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004

    Article  CAS  PubMed  Google Scholar 

  • Meziane H, Van der Sluis I, Van Loon LC, Höfte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185

    Article  PubMed  Google Scholar 

  • Nikitina VE, Alen’kina SA, Ponomareva EG, Savenkova NN (1996) Role of lectins of the cell surface of azospirilla in association with wheat roots. Microbiology 65:144–148

    Google Scholar 

  • Nikitina VE, Bogomolova NV, Ponomareva EG, Sokolov OI (2004) Effect of azospirilla lectins on germination capacity of seeds. Biol Bull 31:354–357

    Article  Google Scholar 

  • Novotnà Z, Valentovà O, Martinec J, Feltl T, Nokhrina K (2000) Study of phospholipase D and C in maturing and germinating seeds of Brassica napus. Biochem Soc Trans 28:817–818

    Article  PubMed  Google Scholar 

  • Ogut M, Er F (2006) Micronutrient composition of field-grown dry bean and wheat inoculated with Azospirillum and Trichoderma. J Plant Nutr Soil Sci 169:699–703

    Article  CAS  Google Scholar 

  • Palva TK, Hurting M, Saindrnann P, Palva ET (1994) Salicylic acid induced resistance to Erwinia carotovora subsp. carotovora in Tobacco. Mol Plant Microbe Interact 7:356–363

    Article  CAS  Google Scholar 

  • Ramos Solano B, Barriuso Maicas J, Pereyra de la Iglesia MT, Domenech J, Gutiérrez Mañero FJ (2008) Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection, and biotic elicitors. Phytopathology 98:451–457

    Article  CAS  PubMed  Google Scholar 

  • Rao MV, Paliyaht G, Ormrod DP (1997) Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Plant Physiol 115:137–149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol 43:439–463

    Article  CAS  Google Scholar 

  • Reitz M, Oger P, Meyer A, Niehaus K, Farrand SK, Hallmann J, Sikora RA (2002) Importance of the O-antigen, core-region and lipid A of rhizobial lipopolysaccharides for the induction of systemic resistance in potato to Globodera pallida. Nematology 4:73–79

    Article  CAS  Google Scholar 

  • Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91:552–555

    Article  CAS  PubMed  Google Scholar 

  • Sadasivan L, Neyra CA (1985) Flocculation in Azospirillum brasilense and Azospirillum lipoferum. J Bacteriol 163:716–723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schulz K, Kerber S, Kelm M (1999) Reevaluation of the Griess method for determining NO/NO2- in aqueous and protein-containing samples. J Nitric Oxide 3:225–234

    Article  CAS  Google Scholar 

  • Simpson GG (2005) NO in flowering. Bioessays 27:239–324

    Article  CAS  PubMed  Google Scholar 

  • Sunahara RK, Taussig R (2002) Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol Interv 2:168–184

    Article  CAS  PubMed  Google Scholar 

  • Tarchevsky IA, Maksyutova NN, Yakovleva VG, Grechkin AN (1999) Succinic acid is a mimetic of salicylic acid. Russ J Plant Physiol 46:17–21

    CAS  Google Scholar 

  • Tarchevsky IA, Yakovleva VG, Egorova AM (2010) Salicylate induced modification of plant proteomes. Appl Biochem Microbiol 46:241–252

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126

    Article  CAS  Google Scholar 

  • Vasyukova NI, Ozeretskovskaya OL (2007) Induced plant resistance and salicylic acid: a review. Appl Biochem Microbiol 43:405–411

    Article  Google Scholar 

  • Wang LJ, Li SH (2006) Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci 170:685–694

    Article  CAS  Google Scholar 

  • Willoughby D, Cooper DM (2006) Ca2+ stimulation of adenylyl cyclase generates dynamic oscillations in cyclic AMP. J Cell Science 119:826–836

    Article  Google Scholar 

  • Wilson ID, Neill SJ, Hancock JT (2008) Nitric oxide synthesis and signalling in plants. Plant Cell Environ 31:622–631

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Moyne AN, Reddy MS, Kloepper JW (2002) The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control 25:288–296

    Article  Google Scholar 

  • Zhu H, Li GJ, Ding L, Cui X, Berg H, Xia Y (2009) Arabidopsis extra large G-protein 2 (XLG2) interacts with the Gβ subunit of heterotrimeric G protein and functions in diseae resistance. Mol Plant 2:513–525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zucker M (1969) Induction of phenylalanine ammonialyase in Xaritin leaf disk. Photosynthetic reguirement and effect of daylegth. Plant Physiol 44:91–112

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by grant no. NSh-3171.2008.4. from the President of the Russian Federation. We thank Dmitry N. Tychinin (this institute) for the English version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana A. Alen’kina.

Additional information

Responsible Editor: Katharina Pawlowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alen’kina, S.A., Bogatyrev, V.A., Matora, L.Y. et al. Signal effects of the lectin from the associative nitrogen-fixing bacterium Azospirillum brasilense Sp7 in bacterial–plant root interactions. Plant Soil 381, 337–349 (2014). https://doi.org/10.1007/s11104-014-2125-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2125-6

Keywords

Navigation