Skip to main content
Log in

Short-term effects of litter from 21 woody species on plant growth and root development

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Plant litter has an important role in terrestrial ecosystems (Lambers et al. 2008). Our aim was to assess the short-term effect of litter from 21 woody species (deciduous and evergreens) on plant growth and root development.

Methods

We conducted a short-term experiment (10 weeks) under controlled conditions adding litter from 21 woody species to pots with Dactylis glomerata (target species). We determined plant biomass and root development and related these variables to decomposition rate and litter quality.

Results

Litter from two species enhanced plant growth whereas litter of five species inhibited it. Considering all species in the data set, plant growth was associated to litter with high decomposition rate and high litter quality: high Ca and N concentration and low polyphenols concentration. However, excluding from the analyses the two species that increased growth, litter inhibition effect on plant growth was related to the litter-polyphenols concentration. Plants growing with nutrient-richer litter had a lower proportion of fine roots which could be related to a litter mediated increase in soil nutrient.

Conclusions

Enhanced plant growth or, on the contrary, plant growth inhibition could be the result of a positive or, in turn, negative balance between nutrient and polyphenols concentration in litter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  Google Scholar 

  • Allen SE, Grimsban HM, Parkinson JA, Quarmby C, Roberts JD (1976) Chemical analysis. In: Chapman SB (ed) Methods in plant ecology. Blackwell, Oxford, pp 411–466

    Google Scholar 

  • Aponte C, García LV, Marañón T, Gardes M (2010) Indirect host effect on ectomycorrhizal fungi: leaf fall and litter quality explain changes in fungal communities on the roots of co-occurring Mediterranean oaks. Soil Biol Biochem 42:788–796

    Article  CAS  Google Scholar 

  • Aponte C, Garcia VL, Marañón T (2012) Tree species effect on litter decomposition and nutrient release in Mediterranean oak forests change over time. Ecosystems 15:1204–1218

    Article  CAS  Google Scholar 

  • Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manag 133:13–22

    Article  Google Scholar 

  • Boeken B, Orenstein D (2001) The effect of plant litter on ecosystem properties in a Mediterranean semi‐arid shrubland. J Veg Sci 12:825–832

    Article  Google Scholar 

  • Bonanomi G, Sicurezza MG, Caporaso S, Esposito A, Mazzoleni S (2006) Phytotoxicity dynamics of decaying plant materials. New Phytol 169:571–578

    Article  CAS  PubMed  Google Scholar 

  • Bonanomi G, Incerti G, Barile E, Capodilupo M, Antignani V, Mingo A, Lanzotti V, Scala F, Mazzoleni S (2011) Phytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects: evidence from solid-state 13C NMR spectroscopy. New Phytol 191:1018–1030

    Article  CAS  PubMed  Google Scholar 

  • Bughio FA, Mangrio SM, Abro SA, Jahangir TM, Bux H (2013) Physio-morphological responses of native Acacia nilotica to eucalyptus allelopathy. Pak J Bot 45:97–105

    Google Scholar 

  • Cornelissen JHC (1996) An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J Ecol 84:573–582

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JH, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Crossley GK, Bradshaw AD (1968) Differences in response to mineral nutrients of populations of ryegrass, Lolium perenne L., and orchardgrass, Dactylis glomerata L. Crop Sci 8:383–387

    Article  Google Scholar 

  • Dauer JM, Chorover J, Chadwick OA, Oleksyn J, Tjoelker MG, Hobbie SE et al (2007) Controls over leaf and litter calcium concentrations among temperate trees. Biogeochemistry 86:175–187

    Article  CAS  Google Scholar 

  • Demey A, Staelens J, Baeten L, Boeckx P, Hermy M, Kattge J, Verheyen K (2013) Nutrient input from hemiparasitic litter favors plant species with a fast-growth strategy. Plant Soil 371:53–66

    Article  CAS  Google Scholar 

  • Di Ferdinando M, Brunetti C, Agati G, Tattini M (2013) Multiple functions of polyphenols in plants inhabiting unfavorable Mediterranean areas. Environ Exp Bot. doi:10.1016/j.envexpbot.2013.09.012

  • Dorrepaal E, Cornelissen JH, Aerts R (2007) Changing leaf litter feedbacks on plant production across contrasting sub-arctic peatland species and growth forms. Oecologia 151:251–261

    Article  PubMed  Google Scholar 

  • Duchaufour P (1984) Dinámica de la materia orgánica. In: Edafología 1: Edafogénesis y clasificación. Masson, S.A, Barcelona, pp 27–68

  • Eissenstat DM (1992) Costs and benefits of constructing roots of small diameter. J Plant Nutr 15:763–782

    Article  Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42

    Article  CAS  Google Scholar 

  • Facelli JM, Pickett STA (1991) Plant litter: its dynamics and its role in plant community structure. Bot Rev 57:1–32

    Article  Google Scholar 

  • Fisher JP, Phoenix GK, Childs DZ, Press MC, Smith SW, Pilkington MG, Cameron DD (2013) Parasitic plant litter input: a novel indirect mechanism influencing plant community structure. New Phytol 198:222–231

    Article  PubMed  Google Scholar 

  • Foster BL, Gross KL (1998) Species richness in a successional grassland: effects of nitrogen enrichment and plant litter. Ecology 79:2593–2602

    Article  Google Scholar 

  • Gallardo A, Merino J (1992) Nitrogen immobilization in leaf litter at two Mediterranean ecosystems of SW Spain. Biogeochemistry 15:213–228

    Article  CAS  Google Scholar 

  • Gallardo A, Merino J (1993) Leaf decomposition in two Mediterranean ecosystems of southwest Spain: influence of substrate quality. Ecology 74:152–161

    Article  Google Scholar 

  • García LV (2004) Escaping the Bonferroni iron claw in ecological studies. Oikos 105:657–663

    Article  Google Scholar 

  • Grime JP, Cornelissen JHC, Thompson K, Hodgson JG (1996) Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves. Oikos 77:489–494

    Article  Google Scholar 

  • Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243

    Article  PubMed  Google Scholar 

  • Heady HF (1956) Changes in a California annual plant community induced by manipulation of natural mulch. Ecology 37:798–812

    Article  Google Scholar 

  • Hodge A, Robinson D, Fitter AH (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plants Sci 5:304–308

    Article  CAS  Google Scholar 

  • Joanisse GD, Bradley RL, Preston CM, Munson AD (2007) Soil enzyme inhibition by condensed litter tannins may drive ecosystem structure and processes: the case of Kalmia angustifolia. New Phytol 175:535–546

    Article  CAS  PubMed  Google Scholar 

  • Köchy M, Wilson SD (1997) Litter decomposition and nitrogen dynamics in aspen forest and mixed-grass prairie. Ecology 78:732–739

    Article  Google Scholar 

  • Koorem K, Price JN, Moora M (2011) Species-specific effects of woody litter on seedling emergence and growth of herbaceous plants. PLoS ONE 6:e26505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lambers H, Chapin IFS, Chapin FS, Pons TL (2008) Plant physiological ecology. Springer, New York

    Book  Google Scholar 

  • Makkar HPS, Becker K (1993) Behaviour of tannic acid from various commercial sources towards some chemical and protein precipitation assays. J Sci Food Agric 62:29–299

    Article  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Northup RR, Dahlgren RA, McColl JG (1998) Polyphenols as regulators of plant-litter-soil interactions in northern California’s pygmy forest: a positive feedback? Biogeochemistry 42:189–220

    Article  CAS  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

    Article  Google Scholar 

  • Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe A, Olsthoorn FM, Pronk A, Vanguelova E, Weih M, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosyst 141:426–442

    Article  Google Scholar 

  • Pérez-Corona ME, De Aldana BRV (2013) Allelopathic potential of invasive Ulmus pumila on understory plant species. Allelopathy J 32:101–112

    Google Scholar 

  • Pérez-Harguindeguy N, Díaz A, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234

    Article  Google Scholar 

  • Reich PB, Oleksyn J, Modrzynski J, Mrozinski P, Hobbie SE, Eissenstat DM, Chorover J, Chadwick OA, Hale CM, Tjoelker MG (2005) Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecol Lett 8:811–818

    Article  Google Scholar 

  • Ryser P (2006) The mysterious root length. Plant Soil 286:1–6

    Article  CAS  Google Scholar 

  • Samedani B, Juraimi AS, Rafii MY, Anuar AR, Sheikh Awadz SA, Anwar MP (2013) Allelopathic effects of litter axonopus compressus against two weedy species and its persistence in soil. Sci World J 695404:8

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, Oxford

    Google Scholar 

  • Tanner EVJ (1981) The decomposition of leaf litter in Jamaican montane rain forests. J Ecol 69:263–275

    Article  Google Scholar 

  • Taylor BR, Parkinson D, Parsons WF (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97–104

    Article  Google Scholar 

  • Terradas J (2001) Ecología de la vegetación: de la ecofisiología de las plantas a la dinámica de comunidades y paisajes. Omega, Barcelona

    Google Scholar 

  • Verhoeven JTA, Toth E (1995) Decomposition of Carex and Sphagnum litter in fens: effect of litter quality and inhibition by living tissue homogenates. Soil Biol Biochem 27(3):271–275

    Article  CAS  Google Scholar 

  • Villar R, Robleto JR, De Jong Y, Poorter H (2006) Differences in construction costs and chemical composition between deciduous and evergreen woody species are small as compared to differences among families. Plant Cell Environ 29:1629–1643

    Article  CAS  PubMed  Google Scholar 

  • Violle C, Richarte J, Navas ML (2006) Effects of litter and standing biomass on growth and reproduction of two annual species in a Mediterranean old‐field. J Ecol 94:196–205

    Article  Google Scholar 

  • Watt AS (1974) Senescence and rejuvenation in ungrazed chalk grassland in Breckland: the significance of litter and moles. J Appl Ecol 11:1157–1171

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Xiong SJ, Nilsson C (1999) The effects of plant litter on vegetation: a meta-analysis. J Ecol 87:984–994

    Article  Google Scholar 

  • Zaady E, Groffman PM, Shachak M (1996) Litter as a regulator of N and C dynamics in macrophytic patches in Negev Desert soils. Soil Biol Biochem 28:39–46

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a predoctoral fellowship FPI-MEC to BLI (BES-2009-016985 and by the coordinated Spanish MEC project INTERBOS (CGL2008-04503-CO3-02), DIVERBOS (CGL2011-30285-C02-02), ANASINQUE project (PGC2010-RNM-5782) by Junta de Andalucía, the Life + Biodehesa Project (11/BIO/ES/000726) and FEDER funding. We would like to thank Jose Antonio Alburquerque, María Espejo, Alba Nieto, Juan López, Mª del Carmen Iglesias, Luisa Fernández, Mar Ávila, Daniel Sánchez, Felisa Covelo, Claudia, Olga and Aída López, Alex Del Rey, Enrique G. De la Riva and Ángeles Carmona for their indispensable help with experiment preparation, plants watering, data collection and chemical analyses. We want also to thank two anonymous referees for their helpful suggestions on a previous version of the manuscript. Our research group is a member of the GLOBIMED network (http://www.globimed.net/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bárbara Lopez-Iglesias.

Additional information

Responsible Editor: Harry Olde Venterink.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Iglesias, B., Olmo, M., Gallardo, A. et al. Short-term effects of litter from 21 woody species on plant growth and root development. Plant Soil 381, 177–191 (2014). https://doi.org/10.1007/s11104-014-2109-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2109-6

Keywords

Navigation