Skip to main content
Log in

Prediction of the edaphic factors influence upon the copper and cobalt accumulation in two metallophytes using copper and cobalt speciation in soils

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Among the unique flora on copper and cobalt rich soils, some species are able to hyperaccumulate the Cu and Co in their shoots, however, the unexplained high variations of Cu and Co concentrations in shoots have been highlighted. A good comprehension of the Cu and Co accumulation variations would go through a characterization of the Cu and Co speciation in soils. We examined the covariations of Cu and Co speciation in soils and Cu and Co concentrations in plants.

Methods

Plant samples of two species and soil samples (n = 146) were collected in seven pedogeochemically contrasted sites. Cu and Co speciation in soils was modeled by WHAM 6.0.

Results

Variation in copper accumulation in plant shoots were mostly influenced by Cu adsorbed by the Mn and Fe oxides fractions, whereas Co accumulation variations were strongly influenced by Co free and Co adsorbed by the OM and Fe fractions.

Conclusions

Availability of Cu and Co seems to be species-specific and is not explained only by the free Cu and Co content in the soil solution, but also strongly by the part linked to colloidal fractions. Availability of Cu and Co is a complex mechanism, closely related to all the biogeochemical processes which occur in the rhizosphere. Future work should perform experiments in controlled conditions to examine the soil parameters that influence the Cu and Co availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

MnOX:

Manganese oxides

FeOx:

Iron oxides

HM:

Humic material

OM:

Organic matter

-MnOx:

Bound to manganese oxides

-FeOx:

Bound to iron oxides

-OM:

Bound to organic matter

SD:

Standard deviation

References

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142

    Article  CAS  Google Scholar 

  • Alford ER, Pilon-Smits EA, Paschke MW (2010) Metallophytes—a view from the rhizosphere. Plant Soil 321(1–2):33–50

    Article  CAS  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils, 2nd edn. Blackie Academic and Professional, London, p 368

    Book  Google Scholar 

  • Avula B, Wan YH, Smillie TJ, Duzgoren-Aydin N, Khan TJ (2010) Quantitative determination of multiple elements in botanicals and dietary supplements using ICP-MS. J Agric Food Chem 58:8887–8894

    Article  PubMed  CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53:306–316

    Article  PubMed  CAS  Google Scholar 

  • Broadley MR, Willey NJ, Wilkins JC, Baker AJM, Mead A, White PJ (2001) Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytol 152:9–27

    Article  CAS  Google Scholar 

  • Brooks RR, Radford CC (1978) Nickel accumulation by European species of the genus Alyssum. Proc Roy Soc Lond 200:217–224

    Article  CAS  Google Scholar 

  • Brooks RR, Morrison RS, Reeves RD, Dudley TR, Akman Y (1979) Hyperaccumulation of nickel by Alyssum linaeus (Cruciferae). Proc Roy Soc Lond 203:387–403

    Article  CAS  Google Scholar 

  • Brun LA, Maillet J, Richarte J, Herrmann P, Remy JC (1998) Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils. Environ Pollut 102:151–161

    Article  CAS  Google Scholar 

  • Chaignon V, Hinsinger P (2003) A biotest for evaluating copper bioavailability to plants in a contaminated soil. J Environ Qual 32:824–833

    Article  PubMed  CAS  Google Scholar 

  • Chaignon V, Bedin F, Hinsinger P (2002) Copper bioavailability and rhizosphere pH changes as affected by nitrogen supply for tomato and oilseed rape cropped on an acidic and calcareous soil. Plant Soil 243:219–228

    Article  CAS  Google Scholar 

  • Childs CW (1975) Composition of iron-manganese concretions from some New Zealand soils. Geoderma 13:141–152

    Article  CAS  Google Scholar 

  • Chipeng FK, Hermans C, Colinet G, Faucon MP, NgongoLuhembwe M, Meerts P, Verbruggen N (2010) Copper tolerance in the cuprophyte Haumaniastrum katangense (S. Moore) P.A. Duvign. & Plancke. Plant Soil 328:235–244

    Article  CAS  Google Scholar 

  • Collins RN, Kinsela AS (2010) The aqueous phase speciation and chemistry of cobalt in terrestrial environments. Chemosphere 79:763–771

    Article  PubMed  CAS  Google Scholar 

  • Collins RN, Kinsela AS (2011) Pedogenic factors and measurements of the plant uptake of cobalt. Plant Soil 339:499–512

    Article  CAS  Google Scholar 

  • Dechamps C, Lefèbvre C, Noret N, Meerts P (2007) Reaction norms of life history traits in response to zinc in Thlaspi caerulescens from metalliferous and non metalliferous sites. New Phytol 173:191–198

    Article  PubMed  CAS  Google Scholar 

  • Duvigneaud P (1958) The vegetation of Katanga and its metalliferous soils. Bull Soc Roy Bot Belg 90:127–286

    Google Scholar 

  • Duvigneaud P (1959) Plantes cobaltophytes dans le Haut Katanga. Bull Soc Roy Bot Belg 91:111–134

    Google Scholar 

  • Duvigneaud P, Denaeyer- De Smet S (1963) Cuivre et vegetation au Katanga. Bull Soc Roy Bot Belg 96:92–231

    Google Scholar 

  • Ernst W (1974) Schwermetalvegetation der Erde. G. Fisher Verlag, Stuttgart

    Google Scholar 

  • Ernst W (1990) Mine vegetation in Europe. In: Shaw JA (ed) Heavy metal tolerance in plants: evolutionary aspects vol 18. CRC, New York, pp 21–38

    Google Scholar 

  • Escarre J, Lefebvre C, Frerot H, Mahieu S, Noret N (2013) Metal concentration and metal mass of metallicolous, non metallicolous and serpentine Noccaea caerulescens populations, cultivated in different growth media. Plant Soil 370:197–221

    Article  CAS  Google Scholar 

  • Fageria NK, Wright RJ, Baligar VC, Sousa CMR (1991) Characterization of physical and chemical properties of varzea soils of Goias State of Brazil. Commun Soil Sci Plant Anal 22:1631–1646

    Article  CAS  Google Scholar 

  • Faucon MP, Shutcha M, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301:29–36

    Article  CAS  Google Scholar 

  • Faucon MP, Colinet G, Mahy G, NgongoLuhembwe M, Verbruggen N, Meerts P (2009) Soil influence on Cu and Co uptake and plant size in the cuprophytes Crepidorhopalon perennis and C. tenuis (Scrophulariaceae) in SC Africa. Plant Soil 317:201–212

    Article  CAS  Google Scholar 

  • Faucon MP, Meersseman A, Shutcha MN, Mahy G, Luhembwe MN, Malaisse F, Meerts P (2010) Copper endemism in the Congolese flora: a database of copper affinity and conservational value of cuprophytes. Plant Ecol Evol 143:5–18

    Article  Google Scholar 

  • Faucon MP, Colinet G, Jitaru P, Verbruggen N, Shutcha M, Mahy G, Meerts P, Pourret O (2011) Relation between cobalt fractionation and its accumulation in Metallophytes from South Central Africa. Mineral Mag 75:832

    Google Scholar 

  • Faucon MP, Chipeng F, Verbruggen N, Mahy G, Collinet G, Shutcha M, Pourret O, Meerts P (2012a) Copper tolerance and accumulation in two cuprophytes of South Central Africa: Crepidorhopalon perennis and C. tenuis (Linderniaceae). Environ Exp Bot 84:11–16

    Article  CAS  Google Scholar 

  • Faucon MP, Tshilong BM, Rossum F, Meerts P, Decocq G, Mahy G (2012b) Ecology and hybridization potential of two sympatric metallophytes, the narrow endemic Crepidorhopalon perennis (Linderniaceae) and its more widespread congener C. tenuis. Biotropica 44:454–462

    Article  Google Scholar 

  • Fomina MA, Alexander IJ, Colpaert JV, Gadd GM (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851–866

    Article  CAS  Google Scholar 

  • Frerot H, Faucon MP, Willems G, Godé C, Courseaux A, Darracq A, Verbruggen N, Saumitou-Laprade P (2010) Genetic architecture of zinc hyperaccumulation in Arabidopsis halleri: the essential role of QTL × environment interactions. New Phytol 187:355–367

    Article  PubMed  CAS  Google Scholar 

  • Gills TE (1995) Standard reference material 1537a—tomatoe leaves—certificate of analysis. National Institute of Standards and Technology, p 5

  • Hanikenne M, Nouet C (2011) Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Curr Opin Plant Biol 14:252–259

    Article  PubMed  CAS  Google Scholar 

  • Harter RD, Naidu R (2001) An assessment of environmental and solution parameter impact on trace-metal sorption by soils. Soil Sci Soc Am J 65:597–612

    Article  CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hinsinger P, Courchesne F (2008) Biogeochemistry of metals and metalloids at the soil-root interface. In: Violante A, Huang PM, Gadd GM (eds) Biophysico-chemical processes of heavy metals and metalloids in soil environment. Wiley, Chichester, pp 268–312

    Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-induced pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303

    Article  PubMed  CAS  Google Scholar 

  • Houben D, Sonnet P (2012) Zinc mineral weathering as affected by plant roots. Appl Geochem 27:1587–1592

    Article  CAS  Google Scholar 

  • Ilunga wa Ilunga E, Seleck M, Colinet G, Faucon MP, Meerts P, Mahy G (2013) Small-scale diversity of plant communities and distribution of species niches on a copper rock outcrop in Upper Katanga, DR Congo. Plant Ecol Evol 146:173–182

    Article  Google Scholar 

  • Kabagale AC, Cornu B, van Vliet F, Meyer CL, Mergeay M, LumbuSimbi JB, Droogmans L, Vander Wauven C, Verbruggen N (2010) Diversity of endophytic bacteria from the cuprophytes Haumaniastrum katangense and Crepidorhopalon tenuis. Plant Soil 334:461–474

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton, p 403

    Google Scholar 

  • Knight B, Zaho FJ, McGrath SP, Shen ZG (1997) Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution. Plant Soil 197:71–78

    Article  CAS  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurti GSR, Naidu R (2002) Solid-solution speciation and phytoavailability of copper and zinc in soils. Environ Sci Technol 36:2645–2651

    Article  PubMed  CAS  Google Scholar 

  • Küpper H, Götz B, Mijovilovich A, Küpper FC, Meyer-Klaucke W (2009) Complexation and toxicity of copper in higher plants: I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiol 151:702–714

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lavilla I, Filgueiras AV, Bendicho C (1999) Comparison of digestion methods for determination of trace and minor metals in plant samples. J Agric Food Chem 47:5072–5077

    Article  PubMed  CAS  Google Scholar 

  • Li Z, McLaren RG, Metherell AK (2004) The availability of native and applied soil cobalt to ryegrass in relation to soil cobalt and manganese status and other soil properties. New Zeal J Agric Res 47:33–43

    Article  CAS  Google Scholar 

  • Lofts S, Tipping E (1998) An assemblage model for cation binding by natural particulate matter. Geochim Cosmochim Acta 62:2609–2625

    Article  CAS  Google Scholar 

  • Luo D, Zheng H, Chen Y, Wang G, Fenghua D (2010) Transfer characteristics of cobalt from soil to crops in the suburban areas of Fujian Province, southeast China. J Environ Manag 91:2248–2253

    Article  CAS  Google Scholar 

  • Macnair MR (2003) The hyperaccumulation of metal by plants. Adv Bot Res 40:63–105

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press International, San Diego

    Google Scholar 

  • McLaren RG, Crawford DV (1973) Studies on soil copper. I. The fractionation of copper in soils. J Soil Sci 24:172–181

    Article  CAS  Google Scholar 

  • McLaren RG, Lawson DM, Swift RS (1987) The availability to pasture plants of native and applied soil cobalt in relation to extractable soil cobalt and other soil properties. J Sci Food Agric 39:101–112

    Article  CAS  Google Scholar 

  • Morrison RS, Brooks RR, Reeves RD, Malaisse F (1979) Copper and cobalt uptake by metallophytes from Zaïre. Plant Soil 53:535–539

    Article  CAS  Google Scholar 

  • Morrison RS, Brooks RR, Reeves RD, Malaisse F, Horowitz P, Aronson M, Merriam GR (1981) The diverse chemical forms of heavy metals in tissue extracts of some metallophytes from Shaba Province, Zaïre. Phytochemistry 20:455–458

    Google Scholar 

  • Nolan AL, Lombi E, McLaughlin MJ (2003) Metal bioaccumulation and toxicity in soils—why bother with speciation? Aust J Chem 56:77–91

    Article  CAS  Google Scholar 

  • Pollard AJ, Powell KD, Harperf A, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Plant Sci 21:539–566

    Article  CAS  Google Scholar 

  • Poschenreider C, Bech J, Llugany M, Pace A, Fenes E, Barcelo J (2001) Copper in plant species in a copper gradient in Catalonia (North East Spain) and their potential for phytoremédiation. Plant Soil 230:247–256

    Article  Google Scholar 

  • Pourret O, Dia A, Davranche M, Gruau G, Henin O, Angee M (2007) Organo-colloidal control on major- and trace-element partitioning in shallow groundwaters: confronting ultrafiltration and modeling. Appl Geochem 22:1568–1582

    Article  CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  PubMed  CAS  Google Scholar 

  • Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils. NATO science series: IV: earth and environmental sciences vol 68. Springer, New York, pp 193–221

    Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Wiley, New York, pp 193–221

    Google Scholar 

  • Saad L, Parmentier I, Colinet G, Malaisse F, Faucon MP, Meerts P, Mahy G (2012) Investigating the vegetation–soil relationships on the copper–cobalt rock outcrops of Katanga (DR Congo), an essential step in a biodiversity conservation plan. Restor Ecol 20:405–415

    Article  Google Scholar 

  • Séleck M, Bizoux JP, Colinet G, Faucon MP, Guillaume A, Meerts P, Piqueray J, Mahy G (2013) Chemical soil factors influencing plant assemblages along copper-cobalt gradients: implications for conservation and restoration. Plant Soil 373:455–469

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry, chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York, p 1022

    Google Scholar 

  • Tipping E (1994) WHAM – a chemical equilibrium model and computer code for waters, sediments and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. Comput Geosci 20:973–1023

    Article  CAS  Google Scholar 

  • Tipping E (1998) Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat Geochem 4:3–48

    Article  CAS  Google Scholar 

  • Toler HD, Morton JB, Cumming JR (2005) Growth and metal accumulation of Mycorrhizal sorghum exposed to elevated copper and zinc. Water Air Soil Pollut 164:155–172

    Article  CAS  Google Scholar 

  • Tongtavee N, Shiowatana J, McLaren RG, Buanuam J (2005) Evaluation of distribution and chemical associations between cobalt and manganese in soils by continuous-flow sequential extraction. Commun Soil Sci Plan 36:2839–2855

    Article  CAS  Google Scholar 

  • Van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  CAS  Google Scholar 

  • Villafort Carvalho M, Amaral DC, Guilheme LRG, Aarts MGM (2013) Gomphrena claussenii, the first South American matallophyte species with indicator-like Zn and Cd accumulation and extreme metal tolerance. Front Plant Sci 4:10. doi:10.3389/fpls.2013.00180

    Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • Whitehead DC (2000) Nutrient elements in grassland. Soil–plant–animal relationships. CAB International, Wallingford, 369 pp

    Book  Google Scholar 

Download references

Acknowledgments

The Polytechnic Institute LaSalle Beauvais (IPLB, Fr) and the Belgian Fund for Scientific Research (FRS-FNRS) are acknowledged for financial support to Bastien Lange, who is a research fellow of the Fonds pour la Recherche dans l’Industrie et l’Agriculture (FRIA, Belgium). Chemaf society, Kalumine society, Tenke Fungurume Mining S.a.r.l. permitted us the plants and soils collection. We are grateful to Serge Ngoy and Jean-Jacques Lunzanga for their help in the plants and soils sampling. We are grateful to Petru Jitaru from HydrISE unit (IPLB, France) for his help in the ICP-MS analysis.

We gratefully thank David Houben (IPLB) and Jean-Paul Reynoird (IPLB) for the manuscript pre-review and Kristine French (University of Wollongong, Au), native speaker, for English reviewing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastien Lange.

Additional information

Responsible Editor: Henk Schat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lange, B., Faucon, MP., Meerts, P. et al. Prediction of the edaphic factors influence upon the copper and cobalt accumulation in two metallophytes using copper and cobalt speciation in soils. Plant Soil 379, 275–287 (2014). https://doi.org/10.1007/s11104-014-2068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2068-y

Keywords

Navigation