Skip to main content

Advertisement

Log in

Soil-plant relationships of metallophytes of the zinc-lead-copper Dugald River gossan, Queensland, Australia

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Metallophytes are plants that can tolerate extreme metal concentrations in the soil in which they grow. The Dugald River zinc (Zn)-lead (Pb) gossan in Queensland (Australia) is one of the largest metal deposits in the world with a surface gossan formed after weathering over millions of years. It hosts a range of metallophytes which may have potential to be used in mine site rehabilitation. This study aimed to investigate the soil-plant relationships of metallophytes on the Dugald River gossan.

Methods

Plant samples and associated rooting soil samples were collected across the gossan and then analysed for metal concentrations. Soil-plant metal relationships were subsequently explored to characterise the species in relation to metal uptake behaviour.

Results

The metallophyte grass, Eriachne mucronata, dominated the gossan, yet there appeared to be no direct relationship between the occurrence of metallophytes and prevailing soil metal concentrations. Using transformation-based redundancy analysis (tb-RDA), two groups of metals, copper (Cu) and Zn-Cadmium (Cd), have been identified to be the primary metals driving species distribution. Crotalaria novae-hollandiae, was able to accumulate high concentrations of each of these metals in its leaves, with up to 16,200 mg Zn kg−1, 545 mg Cu kg−1 and 170 mg Cd kg−1.

Conclusions

Soil metal concentrations alone are not suitable indications for metallophyte distribution or composition in a polymetallic environment. Crotalaria novae-hollandiae can tolerate high concentrations of metals and accumulate Zn-Cu-Cd above the respective hyperaccumulation thresholds; the species can be described for the first time as a strong polymetallic indicator-type metallophyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

Code availability

Not applicable.

References

  • Abubakari F, Nkrumah PN, Fernando DR, Brown GK, Erskine PD, Echevarria G, van der Ent A (2021) Incidence of hyperaccumulation and tissue-level distribution of manganese, cobalt, and zinc in the genus Gossia (Myrtaceae). Metallomics 13. https://doi.org/10.1093/mtomcs/mfab008

  • Baker AJM (1981) Accumulators and excluders -strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654. https://doi.org/10.1080/01904168109362867

    Article  CAS  Google Scholar 

  • Baker AJM (2009) Darwinian Approach to Mine Closure and Restoration. Proc Int Con Mine Clos 4:21–24

    Article  Google Scholar 

  • Baker AJ, Ernst WH, van der Ent A, Malaisse F, Ginocchio R (2010) Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America. In: Batty LC, Hallberg KB (eds) Ecology of industrial pollution. Cambridge University Press, Cambridge

    Google Scholar 

  • Bert V, Bonnin I, Saumitou-Laprade P, De Laguérie P, Petit D (2002) Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol 155:47–57

    Article  CAS  PubMed  Google Scholar 

  • Bidwell SD, Woodrow IE, Batianoff GN, Sommer-Knudsen J (2002) Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia. Funct Plant Biol 29:899–890

    Article  CAS  PubMed  Google Scholar 

  • Bivand RS, Pebesma E, Gomez-Rubio V (2013) Applied spatial data analysis with R, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Bivand R, Keitt T, Rowlingson B (2020) rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.5–18. https://CRAN.R-project.org/package=rgdal. Accessed 1 Sep 2020

  • Bizoux JP, Daïnou K, Raspé O, Lutts S, Mahy G (2008) Fitness and genetic variation of Viola calaminaria, an endemic metallophyte: implications of population structure and history. Plant Biol 10:684–693

    Article  PubMed  Google Scholar 

  • Blake D (1987) Geology of the Mt Isa Inlier and environs. Bur Min Res Bull 225

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Blissett AH (1966) Copper tolerant plants from the Ukaparinga copper mine, Williamstown. Quart Geol Notes Geol Surv S Aust 18:1–3

    Google Scholar 

  • BOM (2021) Cloncurry Airport, station number 02141, Daily temperature and rainfall. http://www.bom.gov.au/climate/data/index.shtml. Accessed 23 May 2021

  • Bradshaw AD (2000) The use of natural processes in reclamation–advantages and difficulties. Landsc. Urban Plan 51:89–100

    Article  Google Scholar 

  • Brooks RR (1979) Indicator plants for mineral prospecting—A critique. J Geochem Explor 12:67–78

    Article  CAS  Google Scholar 

  • Brooks RR, McCleave JA, Malaisse F (1977) Copper and cobalt in African species of Crotalaria. L Proc R Soc Lond 197(1127):231–236

    CAS  Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3(9):359–362

    Article  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Soc Am J 59(1):125–133

    Article  CAS  Google Scholar 

  • Chaney RL (1993) Zinc phytotoxicity. In: Robson AD (ed) Zinc in soils and plants. Springer, Dordrecht

    Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJ (1997) Phytoremediation of soil metals. COBIOT 8(3):279–284

    CAS  Google Scholar 

  • Cole MM (1973) Geobotanical and Biogeochemical Investigations in the Sclerophyllous Woodland and Shrub Associations of the Eastern Goldfield Area of Western Australia, with Particular Reference to the Role of Hybanthus floribundus (Lindl.) F. Muell. as a Nickel Indicator and Accumulator. Plant J Appl Ecol 1:269–320

    Article  Google Scholar 

  • Cole MM, Smith RF (1984) Vegetation as Indicator of Environmental Pollution. Trans Inst Br Geogr 9:477–493. https://doi.org/10.2307/621782

    Article  Google Scholar 

  • Cole MM, Provan DMJ, Tooms JS (1968) Geobotany, biogeochemistry and geochemistry in the Bulman-Waimuna Springs area, Northern Territory, Australia. Trans Inst Min Met Sec B 77:81–104

    Google Scholar 

  • Craw D, Rufaut C, Haffert L, Paterson L (2007) Plant colonization and arsenic uptake on high arsenic mine wastes, New Zealand. Water Air Soil Pollut 179:351–364. https://doi.org/10.1007/s11270-006-9238-3

    Article  CAS  Google Scholar 

  • Ernst WH (2006) Evolution of metal tolerance in higher plants. Snow Landsc Res 80(3):251–274

    Google Scholar 

  • Erskine P, van der Ent A, Fletcher A (2012) Sustaining metal-loving plants in mining regions. Science 337(6099):1172–1173

    Article  CAS  PubMed  Google Scholar 

  • Esfeld K, Hensen I, Wesche K, Jakob SS, Tischew S, Blattner FR (2008) Molecular data indicate multiple independent colonizations of former lignite mining areas in Eastern Germany by Epipactis palustris (Orchidaceae). Biodiv Cons 17:2441–2453

    Article  Google Scholar 

  • Farago ME, Clark AJ, Pitt MJ (1977) Plants which accumulate metals. Part I. The metal content of three Australian plants growing over mineralised sites. Inorganica Chim Acta 24:53–56

    Article  CAS  Google Scholar 

  • Foy CD, Chaney RT, White MC (1978) The physiology of metal toxicity in plants. Ann Rev Plant Physio 29(1):511–566

    Article  CAS  Google Scholar 

  • Gerhardt KE, Gerwing PD, Greenberg BM (2017) Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170–185

    Article  CAS  PubMed  Google Scholar 

  • Ginocchio R, Toro I, Schnepf D, Macnair MR (2002) Copper tolerance in populations of Mimulus luteus var. variegatus exposed and non exposed to copper pollution. Geochem Explor Env Analy 2:151–156

    Article  CAS  Google Scholar 

  • Grooves RW, Stevenson BG, Stevenson EA, Taylor RG (1972) Geochemical and geobotanical studies in the Emuford district of the Herberton tin field, North Queensland, Australia. Trans Inst Min Metall (Sec B: Applied Earth Sci) 81:127–137

    Google Scholar 

  • Hijmans RJ (2020) raster: Geographic Data Analysis and Modeling. R package version 3.3-13. https://CRAN.Rproject.org/package=raster. Accessed 1 Sep 2020

  • Holland AE (2002) A review of Crotalaria L. (Fabaceae: Crotalarieae) in Australia. Austrobaileya 6(2):293–324

  • Hornung RW, Reed LD (1990) Estimation of average concentration in the presence of nondetectable values. Appl Occup Environ Hyg 5(1):46–51

    Article  CAS  Google Scholar 

  • Jhee EM, Boyd RS, Eubanks MD (2006) Effectiveness of metal–metal and metal–organic compound combinations against Plutella xylostella: implications for plant elemental defense. J Chem Ecol 32(2):239–259

    Article  CAS  PubMed  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Ann. Rev. Plant Biol. 61:517–534

    Article  Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lindsay WL, Norvell W (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper 1. Soil Sci Soc Am J 42(3):421–428

    Article  CAS  Google Scholar 

  • Lombi E, Zhao F, McGrath S, Young S, Sacchi G (2001) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol 149:53–60

    Article  CAS  PubMed  Google Scholar 

  • Lottermoser BG, Ashley PM, Munksgaard NC (2008) Biogeochemistry of Pb–Zn gossans, northwest Queensland, Australia: implications for mineral exploration and mine site rehabilitation. Appl Geochem 23(4):723–742

    Article  CAS  Google Scholar 

  • Malaisse F, Gregoire J, Brooks RR, Morrison RS, Reeves RD (1978) Aeolanthus biformifolius De Wild.: a hyperaccumulator of copper from Zaire. Science 199(4331):887–888

    Article  CAS  PubMed  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232(1):207–214

    Article  CAS  Google Scholar 

  • Malaisse F, Schaijes M,D’Outreligne C (2016) Copper-cobalt Flora of Upper Katanga and Copperbelt: Field Guide. Gembloux, Les Presses Agronomiques de Gembloux (Belgium), 422 pp

  • Microsoft Corporation (2021) Microsoft 365 Excel Enterprise. https://www.microsoft.com/en-au/microsoft-365?rtc=1

  • Mogopodi D, Mosetlha K, Torto N, Wibetoe G (2008) Accumulation patterns of Cu and Ni for Indigofera melanadenia and Tephrosia longipes plant species growing in Cu–Ni mining area in Botswana. J Geochem Explor 97(1):21–28

    Article  CAS  Google Scholar 

  • Nicolls OW, Provan DMJ, Cole MM, Tooms JS (1965) Geobotany and geochemistry in mineral exploration in the Dugald River Area, Cloncurry District, Australia. Trans Inst Min Metall 74:695–799

    CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.Rproject.org/package=vegan. Accessed 1 Sep 2020

  • Paul AL, Erskine PD, van der Ent A (2018) Metallophytes on Zn-Pb mineralised soils and mining wastes in Broken Hill, NSW, Australia. Aust J Bot 66(2):124–133

    Article  CAS  Google Scholar 

  • Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comp Geosci 30:683–691

    Article  Google Scholar 

  • Pebesma E (2018) Simple Features for R: Standardized Support for Spatial Vector Data. R J 10(1):439–446. https://doi.org/10.32614/RJ-2018-009

    Article  Google Scholar 

  • Pebesma EJ, Bivand RS (2005) Classes and methods for spatial data in R. R News 5(2):9–13

    Google Scholar 

  • Pollard AJ, Reeves RD, Baker AJ (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217:8–17

    Article  PubMed  Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org/. Accessed 1 Sep 2020

    Google Scholar 

  • Rajakaruna N, Bohm BA (2002) Serpentine and its vegetation: a preliminary study from Sri Lanka. J Appl Bot 76:20–28

    Google Scholar 

  • Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils. Springer, Dordrecht

    Google Scholar 

  • Reeves RD, Kruckeberg AR (2018) Re-examination of the elemental composition of some Caryophyllaceae on North American ultramafic soils. Ecol Res 33(4):715–722

    Article  CAS  Google Scholar 

  • Reeves RD, Schwartz C, Morel JL, Edmondson J (2001) Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremediat 3(2):145–172

    Article  CAS  Google Scholar 

  • Reeves RD, van der Ent A, Baker AJ (2018a) Global distribution and ecology of hyperaccumulator plants. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals. Springer, Cham

    Google Scholar 

  • Reeves RD, Baker AJ, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2018b) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218(2):407–411

    Article  PubMed  Google Scholar 

  • Reisch C (2007) Genetic structure of Saxifraga tridactylites (Saxifragaceae) from natural and man-made habitats. Conserv Genet 8:893–902

    Article  CAS  Google Scholar 

  • Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56

    Article  CAS  Google Scholar 

  • Severne BC, Brooks RR (1972) A nickel accumulating plant from Western Australia. Planta 103:91–94

    Article  CAS  PubMed  Google Scholar 

  • Smith RAH, Bradshaw AD (1972) Stabilization of toxic mine wastes by the use of tolerant plant populations. Instit. Ming Metall Bull Trans 81(791):230–237

    Google Scholar 

  • Tang RH, Erskine PD, Lilly R, van der Ent A (2020) The biogeochemistry of copper metallophytes in the Roseby Corridor (North-West Queensland, Australia). Chemoecology 31(1):1–12

    Google Scholar 

  • Taylor GF, Appleyard EC (1983) Weathering of the zinc-lead lode, Dugald River, northwest Queensland: I. The gossan profile. J Geochem Explor 18(2):87–110

    Article  CAS  Google Scholar 

  • Tennekes M (2018) tmap: Thematic Maps in R. J Stat Softw 84(6):1–39. https://doi.org/10.18637/jss.v084.i06

    Article  Google Scholar 

  • Tibbett M (2015) Mining in ecologically sensitive landscapes. CSIRO Publishing, Melbourne

    Book  Google Scholar 

  • Tordoff GM, Baker AJM, Willis AJ (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41:219–228

    Article  CAS  PubMed  Google Scholar 

  • van der Ent A, Baker AJ, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant soil 362(1):319–334

    Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel JL, Echevarria G, Fogliani B, Rongliang Q, Mulligan DR (2015) Agromining: Farming for metals in the future? Environ Sci Technol 49:4773–4780

    Article  PubMed  Google Scholar 

  • Wang Y, Kanipayor R, Brindle ID (2014) Rapid high-performance sample digestion for ICP determination by ColdBlock™ digestion: part 1 environmental samples. J Anal At Spectrom 29(1):162–168

    Article  CAS  Google Scholar 

  • Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JAC, Angle JS, Chaney RL, Ginocchio R (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12(1):106–116

    Article  Google Scholar 

  • Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York. https://cran.rproject.org/doc/Rnews/. Accessed 1 Sep 2020

  • Wu C, Liao B, Wang S-L, Zhang J, Li J-T (2010) Pb and Zn accumulation in a Cd-hyperaccumulator (Viola baoshanensis). Int J Phytoremediat 12:574–585

    Article  CAS  Google Scholar 

  • Xu G (1996) Structural geology of the Dugald River Zn-Pb-Ag deposit, Mount Isa Inlier, Australia. Ore Geo Rev 11(6):339–361

    Article  Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259(1):181–189

    Article  CAS  Google Scholar 

Download references

Funding

Roger Tang is the recipient of a UQ Graduate School Scholarship (UQGSS) from The University of Queensland. MMG Limited provided funding and operational support during the fieldwork.

Author information

Authors and Affiliations

Authors

Contributions

RHT, PDE, PNN, GE and AVDE conducted the fieldwork. RHT performed the chemical analysis of the samples and undertook the statistical analysis. All authors contributed to interpretation of data, writing of the article and final approval of the version submitted.

Corresponding author

Correspondence to Antony van der Ent.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: Fangjie Zhao.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 6155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, R.H., Erskine, P.D., Nkrumah, P.N. et al. Soil-plant relationships of metallophytes of the zinc-lead-copper Dugald River gossan, Queensland, Australia. Plant Soil 471, 227–245 (2022). https://doi.org/10.1007/s11104-021-05209-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-05209-z

Keywords

Navigation