Skip to main content
Log in

Effects of waterlogging on the solubility and redox state of Sb in a shooting range soil and its uptake by grasses: a tank experiment

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The effects of waterlogging on redox state and solubility of antimony (Sb) in a calcareous shooting range soil and its uptake by forage grass Lolium perenne L. and pasture weed Holcus lanatus L. were investigated.

Methods

Grasses were grown on semi-waterlogged or waterlogged shooting range soil in a laboratory tank. The soil solution was sampled at various depths over time and analyzed for the concentrations of Sb(III), Sb(V) and total Sb, as well as other trace elements.

Results

Although the reduction of Sb(V) to Sb(III) under increased waterlogging time decreased Sb solubility, it increased Sb uptake by L. perenne from 1.1 to 1.7 mg kg−1 (and to a lesser extent H. lanatus), implying preferential uptake of Sb(III) by this grass. The tank showed considerable variation in redox conditions with depth and plant treatment. The soil root zone (30 cm for L. perenne and 15 cm for H. lanatus) instead of the water saturated bottom, showed the highest manganese (Mn) and iron (Fe) concentrations in solution, accompanied by a higher proportion of Sb(III) in solution than the bottom zone of the tank.

Conclusions

Waterlogging can increase the risk of Sb entering the food chain from shooting range soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arai Y (2010) Arsenic and antimony. In: Hooda PS (ed) Trace elements in soils. Wiley-Blackwell, London, pp 384–400

    Google Scholar 

  • Audet P, Charest C (2010) Identification of constraining experimental-design factors in mycorrhizal pot-growth studies. J Bot 2010:1–6. doi:10.1155/2010/718013

    Google Scholar 

  • Bannon DI, Drexler JW, Fent GM, Casteel SW, Hunter PJ, Brattin WJ, Major MA (2009) Evaluation of small arms range soils for metal contamination and lead bioavailability. Environ Sci Technol 43(24):9071–9076. doi:10.1021/es901834h

    Article  PubMed  CAS  Google Scholar 

  • Baroni F, Boscagli A, Protano G, Riccobono F (2000) Antimony contents in plant species growing in an Sb-mining district (Tuscany, Italy). In: Markert B, Friese K (eds) Trace metals in the environment, vol 4. Elsevier, pp 341–361

  • Belzile N, Chen YW, Wang ZJ (2001) Oxidation of antimony (III) by amorphous iron and manganese oxyhydroxides. Chem Geol 174(4):379–387. doi:10.1016/s0009-2541(00)00287-4

    Article  CAS  Google Scholar 

  • Bienert GP, Thorsen M, Schussler MD, Nilsson HR, Wagner A, Tamas MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:26. doi:10.1186/1741-7007-6-26

    Article  PubMed  Google Scholar 

  • Bowen GD, Rovira A (1991) The rhizosphere. In: Walsel Y, Eshel A, Kafkafi U (eds) Plant roots, the hidden half. Marcel Dekker, New York, pp 641–669

    Google Scholar 

  • BUWAL (2005) Gefährdungsabschätzung und Massnahmen bei schadstoffbelasteten Böden. Bundesamt für Umwelt, Wald und Landschaft. Bern

  • Cao XD, Ma LQ, Chen M, Hardison DW, Harris WG (2003) Lead transformation and distribution in the soils of shooting ranges in Florida, USA. Sci Total Environ 307(1–3):179–189. doi:10.1016/s0048-9697(02)00543-0

    Article  PubMed  CAS  Google Scholar 

  • Cheng JM, Wong MH (2008) Effects of earthworm (Pheretima SP.) on three sequential ryegrass harvests for remediating Lead/Zinc mine tailings. Int J Phytorem 10(3):173–184

    Article  CAS  Google Scholar 

  • Comino E, Menegatti S, Fiorucci A, Schwitzguebel JP (2011) Accumulation and translocation capacity of As, Co, Cr and Pb by forage plants. Agrochimica 55(2):105–115

    CAS  Google Scholar 

  • Conesa HM, Wieser M, Gasser M, Hockmann K, Evangelou MWH, Studer B, Schulin R (2010) Effects of three amendments on extractability and fractionation of Pb, Cu, Ni and Sb in two shooting range soils. J Hazard Mater 181:845–850

    Article  PubMed  CAS  Google Scholar 

  • Conesa HM, Wieser M, Studer B, Schulin R (2011) Effects of vegetation and fertilizer on metal and Sb plant uptake in a calcareous shooting range soil. Ecol Eng 37(4):654–658. doi:10.1016/j.ecoleng.2010.11.001

    Article  Google Scholar 

  • Cornelis G, Johnson CA, Van Gerven T, Vandecasteele C (2008) Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: a review. Appl Geochem 23(5):955–976. doi:10.1016/j.apgeochem.2008.02.001

    Article  CAS  Google Scholar 

  • Council of the European Communities (1998) Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption

  • Elinder CG, Friberg L (1986) Antimony. In: Friberg L, Nordberg GF, Vouk V (eds) Handbook on the toxicity of metals, 2nd edn. Elsevier Science Publication, New York, pp 353–365

    Google Scholar 

  • Everaarts AP, van Beusichem ML (1998) The effect of planting date and plant density on potassium and magnesium uptake and harvest by Brussels sprouts. J Agron Crop Sci 181(4):201–207

    Article  CAS  Google Scholar 

  • Filella M, Belzile N, Lett MC (2007) Antimony in the environment: a review focused on natural waters. III. Microbiota relevant interactions. Earth Sci Rev 80(3–4):195–217

    Article  CAS  Google Scholar 

  • Filella M, Williams PA, Belzile N (2009) Antimony in the environment: knowns and unknowns. Environ Chem 6(2):95–105. doi:10.1071/en09007

    Article  CAS  Google Scholar 

  • Gebel T (1997) Arsenic and antimony: comparative approach on mechanistic toxicology. Chem Biol Interact 107(3):131–144

    Article  PubMed  CAS  Google Scholar 

  • Gonzaga MIS, Santos JAG, Ma LQ (2008) Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: repeated harvests and arsenic redistribution. Environ Pollut 154(2):212–218

    Article  PubMed  CAS  Google Scholar 

  • Griggs CS, Martin WA, Larson SL, O'Connnor G, Fabian G, Zynda G, Mackie D (2011) The effect of phosphate application on the mobility of antimony in firing range soils. Sci Total Environ 409(12):2397–2403. doi:10.1016/j.scitotenv.2011.02.043

    Article  PubMed  CAS  Google Scholar 

  • Hammel W, Debus R, Steubing L (2000) Mobility of antimony in soil and its availability to plants. Chemosphere 41(11):1791–1798. doi:10.1016/s0045-6535(00)00037-0

    Article  PubMed  CAS  Google Scholar 

  • Hanson PJ, Sucoff EI, Markhart AH (1985) Quantifying apoplastic flux through red pine root systems using trisodium, 3-hydroxy-5,8,10-pyrenetrisulfonate. Plant Physiol 77:21–24

    Article  PubMed  CAS  Google Scholar 

  • He MC, Yang JR (1999) Effects of different forms of antimony on rice during the period of germination and growth and antimony concentration in rice tissue. Sci Total Environ 244:149–155

    Article  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248(1):43–59. doi:10.1023/a:1022371130939

    Article  CAS  Google Scholar 

  • Huang C, Webb MJ, Graham RD (1996) Pot size affects expression of Mn efficiency in barley. Plant Soil 178(2):205–208. doi:10.1007/bf00011584

    Article  CAS  Google Scholar 

  • Inglett PW, Reddy KR, Corstanje R (2005) Anaerobic soils. In: Daniel H (ed) Encyclopedia of soils in the environment. Elsevier, Oxford, pp 72–78

    Google Scholar 

  • Johnson CA, Moench H, Wersin P, Kugler P, Wenger C (2005) Solubility of antimony and other elements in samples taken from shooting ranges. J Environ Qual 34(1):248–254

    PubMed  CAS  Google Scholar 

  • Kamiya T, Fujiwara T (2009) Arabidopsis NIP1;1 transports antimonite and determines antimonite sensitivity. Plant Cell Physiol 50(11):1977–1981

    Article  PubMed  CAS  Google Scholar 

  • Kirsch R, Scheinost AC, Rossberg A, Banerjee D, Charlet L (2008) Reduction of antimony by nano-particulate magnetite and mackinawite. Mineral Mag 72(1):185–189. doi:10.1180/minmag.2008.072.1.185

    Article  CAS  Google Scholar 

  • Laporte-Saumure M, Martel R, Mercier G (2011) Characterization and metal availability of copper, lead, antimony and zinc contamination at four Canadian small arms firing ranges. Environ Technol 32(7):767–781. doi:10.1080/09593330.2010.512298

    Article  PubMed  CAS  Google Scholar 

  • Leuz AK, Hug S, Moench H, Wehrli B, Johnson CA (2002) The redox chemistry of antimony in lakes. Geochim Cosmochim Acta 66(15A):A450

    Google Scholar 

  • Leuz AK, Hug SJ, Wehrli B, Johnson CA (2006) Iron-mediated oxidation of antimony(III) by oxygen and hydrogen peroxide compared to arsenic(III) oxidation. Environ Sci Technol 40(8):2565–2571. doi:10.1021/es052059h

    Article  PubMed  CAS  Google Scholar 

  • Lewis J, Sjostrom J, Skyllberg U, Hagglund L (2010) Distribution, chemical speciation, and mobility of lead and antimony originating from small arms ammunition in a coarse-grained unsaturated surface sand. J Environ Qual 39(3):863–870. doi:10.2134/jeq2009.0211

    Article  PubMed  CAS  Google Scholar 

  • Lin Z (1996) Secondary mineral phases of metallic lead in soils of shooting ranges from Örebro County, Sweden. Environ Geol 27(4):370–375. doi:10.1007/bf00766707

    Article  CAS  Google Scholar 

  • Logoteta B, Xu XY, Macnair MR, McGrath SP, Zhao FJ (2009) Arsenite efflux is not enhanced in the arsenate-tolerant phenotype of Holcus lanatus. New Phytol 183(2):340–348. doi:10.1111/j.1469-8137.2009.02841.x

    Article  PubMed  CAS  Google Scholar 

  • Massmann G, Nogeitzig A, Taute T, Pekdeger A (2008) Seasonal and spatial distribution of redox zones during lake bank filtration in Berlin, Germany. Environ Geol 54(1):53–65

    Article  CAS  Google Scholar 

  • Mathys R, Dittmar J, Johnson A (2007) Antimony in Switzerland: a substance flow analysis. The Swiss Federal Office for the Environment (FOEN), Bern

    Google Scholar 

  • Miao SY, DeLaune RD, Jugsujinda A (2006) Influence of sediment redox conditions on release/solubility of metals and nutrients in a Louisiana Mississippi River deltaic plain freshwater lake. Sci Total Environ 371(1–3):334–343. doi:10.1016/j.scitotenv.2006.07.027

    Article  PubMed  CAS  Google Scholar 

  • Migliorini M, Pigino G, Bianchi N, Bernini F, Leonzio C (2004) The effects of heavy metal contamination on the soil arthropod community of a shooting range. Environ Pollut 129(2):331–340. doi:10.1016/j.envpol.2003.09.025

    Article  PubMed  CAS  Google Scholar 

  • Mitsunobu S, Harada T, Takahashi Y (2006) Comparison of antimony behavior with that of arsenic under various soil redox conditions. Environ Sci Technol 40(23):7270–7276. doi:10.1021/es060694x

    Article  PubMed  CAS  Google Scholar 

  • Mitsunobu S, Takahashi Y, Sakai Y (2008) Abiotic reduction of antimony(V) by green rust (Fe4(II)Fe2(III)(OH)12SO4.3H2O). Chemosphere 70(5):942–947. doi:10.1016/j.chemosphere.2007.07.021

    Article  PubMed  CAS  Google Scholar 

  • Mitsunobu S, Takahashi Y, Terada Y (2010) mu-XANES evidence for the reduction of Sb(V) to Sb(III) in soil from Sb mine tailing. Environ Sci Technol 44(4):1281–1287. doi:10.1021/es902942z

    Article  PubMed  CAS  Google Scholar 

  • Moon GJ, Clough BF, Peterson CA, Allaway WG (1986) Apoplastic and symplastic pathways in Avicennia marina (Forsk.) Vierh. Roots revealed by fluorescent tracer dyes. Aust J Plant Physiol 13:637–648

    Article  CAS  Google Scholar 

  • Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli G (2000) Soil organic matter mobilization by root exudates. Chemosphere 41(5):653–658. doi:10.1016/s0045-6535(99)00488-9

    Article  PubMed  CAS  Google Scholar 

  • Norrstrom AC (1994) Field-measured redox potentials in soils at the groundwater surface-water inferface. Eur J Soil Sci 45(1):31–36. doi:10.1111/j.1365-2389.1994.tb00483.x

    Article  Google Scholar 

  • Phillips IR (1999) Copper, lead, cadmium, and zinc sorption by waterlogged and air-dry soil. J Soil Contam 8(3):343–364

    Article  CAS  Google Scholar 

  • Ramanathan S, Shi WP, Rosen BP, Daunert S (1997) Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria. Anal Chem 69(16):3380–3384. doi:10.1021/ac970111p

    Article  PubMed  CAS  Google Scholar 

  • Ray JD, Sinclair TR (1998) The effect of pot size on growth and transpiration of maize and soybean during water deficit stress. J Exp Bot 49(325):1381–1386. doi:10.1093/jexbot/49.325.1381

    CAS  Google Scholar 

  • Reid BJ, Watson R (2005) Lead tolerance in Aporrectodea rosea earthworms from a clay pigeon shooting site. Soil Biol Biochem 37(3):609–612. doi:10.1016/j.soilbio.2004.09.003

    Article  CAS  Google Scholar 

  • Scheinost AC, Rossberg A, Vantelon D, Xifra I, Kretzschmar R, Leuz AK, Funke H, Johnson CA (2006) Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy. Geochim Cosmochim Acta 70(13):3299–3312. doi:10.1016/j.gca.2006.03.020

    Article  CAS  Google Scholar 

  • Sorvari J (2007) Environmental risks at Finnish shooting ranges—a case study. Hum Ecol Risk Assess 13(5):1111–1146. doi:10.1080/10807030701506124

    Article  CAS  Google Scholar 

  • Stømseng A, Ljønes M (2000) Vertikal transport av tungmetaller i sandjord. Mobilitet, transport og fordeling av bly, kobber, antimon og sink i jordsmonn tilknyttet en 30 m utendørs skytebane på Sessvollmoen. FFI Rapport-2000/06191. http://rapporter.ffi.no/rapporter/2000/06191.pdf accessed 03.05.2012

  • Sundar S, Chakravarty J (2010) Antimony toxicity. Int J Env Res Public Health 7(12):4267–4277. doi:10.3390/ijerph7124267

    Article  CAS  Google Scholar 

  • Takahashi T, Shozugawa K, Matsuo M (2010) Contribution of amorphous iron compounds to adsorptions of pentavalent antimony by soils. Water Air Soil Pollut 208(1–4):165–172. doi:10.1007/s11270-009-0156-z

    Article  CAS  Google Scholar 

  • The Swiss Federal Council (1998) Ordinance relating to impacts on the soil of the Swiss Federal Council, 1st of July 1998, SR 814.12. Eidgenössische Drucksachen- und Materialzentrale, Bern, p 12

  • Thomas CR, Miao S, Sindhoj E (2009) Environmental factors affecting temporal and spatial patterns of soil redox potential in Floriada Everglades wetlands. Wetlands 29(4):1133–1145

    Article  Google Scholar 

  • Tighe M, Ashley P, Lockwood P, Wilson S (2005) Soil, water, and pasture enrichment of antimony and arsenic within a coastal floodplain system. Sci Total Environ 347(1–3):175–186

    Article  PubMed  CAS  Google Scholar 

  • Tschan M, Robinson BH, Nodari M, Schulin R (2009) Antimony uptake by different plant species from nutrient solution, agar and soil. Environ Chem 6(2):144–152. doi:10.1071/en08103

    Article  CAS  Google Scholar 

  • Turkington R, Harper JL (1979) The growth, distribution and neighbour relationships of Trifolium Repens in a permanent pasture: I. Ordination, pattern and contact. J Ecol 67(1):201–218

    Article  Google Scholar 

  • USEPA (1979) Water related fate of the 129 priority pollutants. Vol 1. United States Environmental Protection Agency, Washington

    Google Scholar 

  • Wan XM, Tandy S, Hockmann K, Schulin R (2013) Changes in Sb speciation with waterlogging of shooting range soils and impacts on plant uptake. Environ Pollut 172:53–60

    Article  PubMed  CAS  Google Scholar 

  • Wysocki R, Chery CC, Wawrzycka D, Van Hulle M, Cornelis R, Thevelein JM, Tamas MJ (2001) The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol 40(6):1391–1401. doi:10.1046/j.1365-2958.2001.02485.x

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Hu Y, Bu R (2006) Microscale spatial variability of redox potential in surface soil. Soil Sci 171(10):747–753. doi:10.1097/01.ss.0000230127.86394.45

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge Dr. Dieter Ramseier from the Institute of Integrative Biology, ETH Zürich, for his suggestions in selecting plant species. We also thank Björn Studer and Martin Keller for their technical support. This work was funded by the Sino-Swiss Science and Technology Cooperation (SSSTC) Program (EG 19-032010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Tandy.

Additional information

Responsible Editor: Fangjie Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1.35 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, Xm., Tandy, S., Hockmann, K. et al. Effects of waterlogging on the solubility and redox state of Sb in a shooting range soil and its uptake by grasses: a tank experiment. Plant Soil 371, 155–166 (2013). https://doi.org/10.1007/s11104-013-1684-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1684-2

Keywords

Navigation