Skip to main content
Log in

Mg and Ca root uptake and vertical transfer in soils assessed by an in situ ecosystem-scale multi-isotopic (26Mg & 44Ca) tracing experiment in a beech stand (Breuil-Chenue, France)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The sustainability of forest ecosystems may be at stake especially in forests on base-poor soils due to reduced nutrient deposition and intensified silvicultural practices. Understanding nutrient availability and cycling is therefore essential to manage forest soil fertility. This study aims to assess in a beech plot Mg and Ca vertical transfer in soil and root uptake using an isotopic tracing experiment.

Methods

A simulated rainfall containing a small amount (960 g Mg.ha−1; 530 g Ca.ha−1) of highly enriched 26Mg and 44Ca was sprayed on the forest floor of a 35-yr-old beech plot. The isotopic composition of fine roots and of the soil exchangeable Mg and Ca pool was monitored during 1 year. A pool and flux model (IsoMod) was developed to predict the labeling of the soil and vertical transfer of tracers.

Results

Tracers (44Ca and 26Mg) were immediately retained in the thin litter layer. During the following year, Mg and to a lesser extent Ca were progressively released. After 1 year, the exchangeable Mg and Ca pools of the upper mineral layer (0–5 cm) were strongly labeled (~660 ‰, representing ~55 % of the tracer input and ~370 ‰, ~41 % of the tracer input respectively). A significant proportion (~8 % 26Mg, ~2 % 44Ca) of tracer was leached through the soil, below 10 cm. This amount was much larger than what was predicted using a simple mixing model. The Ca and Mg isotopic composition of fine roots at all depths was close or lower than that of exchangeable Ca and Mg respectively.

Conclusions

An in situ ecosystem-scale 26Mg and 44Ca isotopic tracing experiment was successfully carried out. Tracers were at first strongly retained in the litter layer, then progressively transferred to soil horizons below. Nutrient cycling of Mg and Ca were proven to be very different. Mg had a higher mobility in the soil than Ca, and nutrient uptake sources were proven to be different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arocena JM, Velde B, Robertson SJ (2011) Weathering of biotite in the presence of arbuscular mycorrhizae in selected agricultural crops. Appl Clay Sci

  • Augusto L, Zeller B, Midwood AJ, Swanston C, Dambrine E, Schneider A, Bosc A (2011) Two-year dynamics of foliage labelling in 8-year-old Pinus pinaster trees with (15)N, (26)Mg and (42)Ca-simulation of Ca transport in xylem using an upscaling approach. Ann For Sci 68:169–178

    Article  Google Scholar 

  • Becker JS, Fullner K, Seeling UD, Fornalczyk G, Kuhn AJ (2008) Measuring magnesium, calcium and potassium isotope ratios using ICP-QMS with an octopole collision cell in tracer studies of nutrient uptake and translocation in plants. Anal Bioanal Chem 390:571–578

    Article  PubMed  CAS  Google Scholar 

  • Bolou Bi E (2009) Etude du rôle de la végétation dans le cycle biogéochimique du magnésium: approche isotopique. Université Henri Poincaré, Nancy, p 286

    Google Scholar 

  • Bolou-Bi EB, Vigier N, Brenot A, Poszwa A (2009) Magnesium isotope compositions of natural reference materials. Geostand Geoanal Res 33:95–109

    Article  CAS  Google Scholar 

  • Bolou-Bi EB, Poszwa A, Leyval C, Vigier N (2010) Experimental determination of magnesium isotope fractionation during higher plant growth. Geochim Cosmochim 74:2523–2537

    Article  CAS  Google Scholar 

  • Bolou-Bi EB, Vigier N, Poszwa A, Boudot JP, Dambrine E (2012) Effects of biogeochemical processes on magnesium isotope variations in a forested catchment in the Vosges Mountains (France). Geochim Cosmochim 87:341–355

    Article  CAS  Google Scholar 

  • Bormann FH, Likens GE (1967) Nutrient cylcing. Science 155:424–429

    Article  PubMed  CAS  Google Scholar 

  • Brenot A, Cloquet C, Vigier N, Carignan J, France-Lanord C (2008) Magnesium isotope systematics of the lithologically varied Moselle river basin, France. Geochim Cosmochim 72:5070–5089

    Article  CAS  Google Scholar 

  • Brumme R, Meesenburg H, Bredemeier M, Jacobsen C, Schönfelder E, Meiwes KJ, Eichhorn J (2009) Changes in soil solution chemistry, seepage losses, and input–output budgets at three beech forests in response to atmospheric deposition. In: Brumme R, Khanna PK (eds) Ecological studies 208–functionning and management of European Beech Ecosystems. Springer, Berlin Heidelberg, pp 303–336

    Chapter  Google Scholar 

  • Bucking H, Kuhn AJ, Schroder WH, Heyser W (2002) The fungal sheath of ectomycorrhizal pine roots: an apoplastic barrier for the entry of calcium, magnesium, and potassium into the root cortex? J Exp Bot 53:1659–1669

    Article  PubMed  CAS  Google Scholar 

  • Calvaruso C, Turpault M-P, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microbiol 72:1258–1266

    Article  PubMed  CAS  Google Scholar 

  • Cenki-Tok B, Chabaux F, Lemarchand D, Schmitt A-D, Pierret M-C, Viville D, Bagard M-L, Stille P (2009) The impact of water–rock interaction and vegetation on calcium isotope fractionation in soil- and stream waters of a small, forested catchment (the Strengbach case). Geochim Cosmochim 73:2215–2228

    Article  CAS  Google Scholar 

  • Cobert F, Schmitt AD, Bourgeade P, Labolle F, Badot PM, Chabaux F, Stille P (2011) Experimental identification of Ca isotopic fractionations in higher plants. Geochim Cosmochim 75:5467–5482

    Article  CAS  Google Scholar 

  • Cromack K, Sollins P, Graustein WC, Speidel K, Todd AW, Spycher G, Li C, Todd RL (1979) Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium crassum. Soil Biol Biochem 11:463–468

    Article  CAS  Google Scholar 

  • de Villiers S, Dickson JAD, Ellam RM (2005) The composition of the continental river weathering flux deduced from seawater Mg isotopes. Chem Geol 216:133–142

    Article  Google Scholar 

  • Farkaš J, Déjeant A, Novák M, Jacobsen SB (2011) Calcium isotope constraints on the uptake and sources of Ca2+ in a base-poor forest: a new concept of combining stable (δ44/42Ca) and radiogenic (εCa) signals. Geochim Cosmochim 75:7031–7046

    Article  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  PubMed  CAS  Google Scholar 

  • Gottlein A, Heim A, Kuhn AJ, Schroder WH (2005) In-situ application of stable isotope tracers in the rhizosphere of an oak seedling. Eur J For Res 124:83–86

    Article  Google Scholar 

  • Hazlett PW, Curry JM, Weldon TP (2011) Assessing decadal change in mineral soil cation chemistry at the Turkey Lakes Watershed. Soil Sci Soc Am J 75:287–305

    Article  CAS  Google Scholar 

  • Hindshaw R, Reynolds B, Wiederhold J, Kiczka M, Kretzschmar R, Bourdon B (2012) Calcium isotope fractionation in alpine plants. Biogeochemistry:1–16

  • Hogberg P, Jensen P, Nasholm T, Ohlsson H (1995) Uptake of 24Mg by excised pine roots—a preliminary study. Plant Soil 172:323–326

    Article  Google Scholar 

  • Holmden C, Bélanger N (2010) Ca isotope cycling in a forested ecosystem. Geochim Cosmochim 74:995–1015

    Article  CAS  Google Scholar 

  • Jandl R, Alewell C, Prietzel J (2004) Calcium loss in Central European forest soils. Soil Sci Soc Am J 68:588–595

    Article  CAS  Google Scholar 

  • Jentschke G, Brandes B, Kuhn AJ, Schroder WH, Becker JS, Godbold DL (2000) The mycorrhizal fungus Paxillus involutus transports magnesium to Norway spruce seedlings. Evidence from stable isotope labeling. Plant Soil 220:243–246

    Article  CAS  Google Scholar 

  • Jentschke G, Brandes B, Kuhn AJ, Schröder WH, Godbold DL (2001) Interdependence of phosphorus, nitrogen, potassium and magnesium translocation by the ectomycorrhizal fungus Paxillus involutus. New Phytol 149:327–337

    Article  CAS  Google Scholar 

  • Johnson DW, Lindberg SE (1992) Atmospheric deposition and forest nutrient cycling. Springer, New-York, p 707

    Book  Google Scholar 

  • Johnson DW, Todd DE (1998) Harvesting effects on long-term changes in nutrient pools of mixed oak forest. Soil Sci Soc Am J 62:1725–1735

    Article  CAS  Google Scholar 

  • Johnson DW, Swank WT, Vose JM (1993) Simulated effects of atmospheric sulfur deposition on nutrient cycling in a mixed deciduous forest. Biogeochemistry 23:169–196

    Article  CAS  Google Scholar 

  • Johnson CE, Romanowicz RB, Siccama TG (1997) Conservation of exchangeable cations after clear-cutting of a northern hardwood forest. Can J For Res–Rev Can Rech For 27:859–868

    Google Scholar 

  • Johnson DW, Sogn T, Kvindesland S (2000) The nutrient cycling model: lessons learned. Forest Ecol Manag 138:91–106

    Article  Google Scholar 

  • Jonard M, André F, Dambrine E, Ponette Q, Ulrich E (2009) Temporal trends in the foliar nutritional status of the French, Walloon and Luxembourg braod-leaved plots of forest monitoring. Ann For Sci 66:412–421

    Article  Google Scholar 

  • Kuhn AJ, Bauch J, Schroder WH (1995) Monitoring uptake and contents of Mg, Ca and K in Norway spruce as influenced by pH and Al, using microprobe analysis and stable isotope labelling. Plant Soil 168–169:135–150

    Article  Google Scholar 

  • Kuhn AJ, Schroder WH, Bauch J (1997) On the distribution and transport of mineral elements in xylem, cambium and phloem of spruce (Picea abies L. Karst.). Holzforschung 51:487–496

    Article  CAS  Google Scholar 

  • Kuhn AJ, Schroder WH, Bauch J, Stettien A (1998) Uptake of mineral elements in spruce—a microprobe study. Endocytobiosis Cell Res 12:195–199

    Google Scholar 

  • Kuhn AJ, Schroder WH, Bauch J (2000) The kinetics of calcium and magnesium entry into mycorrhizal spruce roots. Planta 210:488–496

    Article  PubMed  CAS  Google Scholar 

  • Lax A, Roig A, Costa F (1986) A method for determining the cation-exchange capacity of organic materials. Plant Soil 94:349–355

    Article  Google Scholar 

  • Legout A (2008) Cycles Biogéochimiques et bilans de fertilité minérale en hêtraies de plaine. AGROPARISTECH-ENGREF, Nancy, p 281

    Google Scholar 

  • Legout A, Legout C, Nys C, Dambrine E (2009) Preferential flow and slow convective chloride transport through the soil of a forested landscape (Fougères, France). Geoderma 151:179–190

    Article  CAS  Google Scholar 

  • Likens GE, Driscoll CT, Buso DC, Siccama TG, Johnson CE, Lovett GM, Fahey TJ, Reiners WA, Ryan DF, Martin CW, Bailey SW (1998) The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry 41:89–173

    Article  CAS  Google Scholar 

  • Liu S, Munson RK, Johnson DW, Gherini SA, Summers KV, Hudson RJM, Wilkinson KJ, Pitelka LF (1991) The Nutrient Cycling Model (NuCM): overview and application. In: Johnson DW, Lindberg SE (eds) Atmospheric deposition and forest nutrient cycling: a synthesis of the Intergrated Forest Study. Springer, New-York, pp 583–609

    Google Scholar 

  • Mareschal L (2008) Effet des substitutions d’essences forestières sur l’évolution des sols et de leur minéralogie: bilan après 28 ans dans le site expérimental de Breuil (Morvan). In: Ressources Procédés Produits Environnement. Université Henri Poincaré, Nancy, p 328

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London, p 889

    Google Scholar 

  • Martinez-Meza E, Whitford WG (1996) Stemflow, throughfall and channelization of stemflow by roots in three Chihuahuan desert shrubs. J Arid Environ 32:271–287

    Article  Google Scholar 

  • McLaughlin JW, Phillips SA (2006) Soil carbon, nitrogen, and base cation cycling 17 years after whole-tree harvesting in a low-elevation red spruce (Picea rubens)-balsam fir (Abies balsamea) forested watershed in central Maine, USA. Forest Ecol Manag 222:234–253

    Article  Google Scholar 

  • McLaughlin JW, Calhoon EBW, Gale MR, Jurgensen MF, Trettin CC (2011) Biogeochemical cycling and chemical fluxes in a managed northern forested wetland, Michigan, USA. Forest Ecol Manag 261:649–661

    Article  Google Scholar 

  • Metzner R, Thorpe MR, Breuer U, Blumler P, Schurr U, Schneider HU, Schroeder WH (2010) Contrasting dynamics of water and mineral nutrients in stems shown by stable isotope tracers and cryo-SIMS. Plant Cell Environ 33:1393–1407

    PubMed  CAS  Google Scholar 

  • Midwood AJ, Proe MF, Harthill JJ (2000) Use and analysis by thermal ionisation mass spectrometry of Mg-26 and K-41 to assess mineral uptake in Scots pine (Pinus sylvestris L.). Analyst 125:487–492

    Article  CAS  Google Scholar 

  • Miller DE, Watmough SA (2009) Soil acidification and foliar nutrient status of Ontario’s deciduous forest in 1986 and 2005. Environ Pollut 157:664–672

    Article  PubMed  CAS  Google Scholar 

  • Moukoumi J (2006) Effet des essences forestières sur la biodégradation des matières organiques: impacts sur la dynamique et le cycle du carbone, de l’azote et des éléments minéraux. Université Henri Poincaré, Nancy, p 255

    Google Scholar 

  • Page BD, Bullen TD, Mitchell MJ (2008) Influences of calcium availability and tree species on Ca isotope fractionation in soil and vegetation. Biogeochemistry 88:1–13

    Article  CAS  Google Scholar 

  • Pogge von Strandmann PAE, Burton KW, James RH, van Calsteren P, Gislason SR, Sigfusson B (2008) The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain. Earth Planet Sci Lett 276:187–197

    Article  CAS  Google Scholar 

  • Proe MF, Midwood AJ, Craig J (2000) Use of stable isotopes to quantify nitrogen, potassium and magnesium dynamics in young Scots pine (Pinus sylvestris). New Phytol 146:461–469

    Article  CAS  Google Scholar 

  • Ranger J, Turpault M-P (1999) Input–output nutrient budgets as a diagnostic tool for sustainable forest management. Forest Ecol Manag 122:139–154

    Article  Google Scholar 

  • Ranger J, Andreux F, Bienaimé S, Berthelin J, Bonnaud P, Boudot JP, Bréchet C, Buée M, Calmet J, Chaussod R, Gelhaye D, Gelhaye L, Gérard F, Jaffrain J, Lejon D, Le Tacon F, Lévêque J, Maurice J, Merlet D, Moukoumi J, Munier-Lamy C, Nourrisson G, Pollier B, Ranjard L, Simonsson M, Turpault M P, Vairelles D, Zeller B (2004) Effet des substitutions d’essence sur le fonctionnement organo-minéral de l’écosystème forestier, sur les communautés microbiennes et sur la diversité des communautés fongiques mycorhiziennes et saprophytes (cas du dispositif de Breuil - Morvan), Rapport final contrat INRA-GIP Ecofor 2001-24, No. INRA 1502A. INRA Biogéochimie des Ecosystèmes Forestiers (UR 1138), 54280 Champenoux

  • Ranger J, Bonnaud P, Bouriaud O, Gelhaye D, Picard JF (2008) Effects of the clear-cutting of a douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantation on chemical soil fertility. Ann For Sci 65:303–316

    Article  Google Scholar 

  • Russell WA, Papanastassiou DA, Tombrello TA (1978) Ca isotope fractionation on Earth and other solar-system materials. Geochim Cosmochim 42:1075–1090

    Article  CAS  Google Scholar 

  • Sturup S, Hansen HR, Gammelgaard B (2008) Application of enriched stable isotopes as tracers in biological systems: a critical review. Anal Bioanal Chem 390:541–554

    Article  PubMed  Google Scholar 

  • Sverdrup H, Warfvinge P (1988) Weathering of primary silicate minerals in the natural soil environment in relation to a chemical weathering model. Water Air Soil Pollut 38:387–408

    CAS  Google Scholar 

  • Sverdrup H, Thelin G, Robles M, Stjernquist I, Sörensen J (2006) Assesing nutrient sustainability of forest production for different tree species considering Ca, Mg, K, N and P at Björnstorp Estate. Sweden Biogeochemistry 81:219–238

    Article  CAS  Google Scholar 

  • Tait K, Sayer JA, Gharieb MM, Gadd GM (1999) Fungal production of calcium oxalate in leaf litter microcosms. Soil Biol Biochem 31:1189–1192

    Article  CAS  Google Scholar 

  • Tipper ET, Louvat P, Capmas F, Galy A, Gaillardet J (2008) Accuracy of stable Mg and Ca isotope data obtained by MC-ICP-MS using the standard addition method. Chem Geol 257:65–75

    Article  CAS  Google Scholar 

  • Turpault MP, Nys C, Calvaruso C (2009) Rhizosphere impact on the dissolution of test minerals in a forest ecosystem. Geoderma 153:147–154

    Article  Google Scholar 

  • van der Heijden G, Legout A, Nicolas M, Ulrich E, Johnson DW, Dambrine E (2011) Long-term sustainability of forest ecosystems on sandstone in the Vosges Mountains (France) facing atmospheric deposition and silvicultural change. Forest Ecol Manag 261:730–740

    Article  Google Scholar 

  • Vialette Y (1962) Contribution à l’étude géochronologique par la méthode au Sr des principaux massifs de granites et de migmatites du massif central français. Ann Fac Sci Clermon-Ferrand 6:88

    Google Scholar 

  • Vialette Y (1965) Granitisation hercynienne dans le massif central français. Sci Terre:369–382

  • Wallman P, Svensson M, Sverdrup H, Belyazid S (2005) ForSAFE-an integrated process-oriented forest model for long-term sustainability assessments. Forest Ecol Manag 207:19–36

    Article  Google Scholar 

  • Warfvinge P, Sverdrup H (1992) Calculatingcritical loads of acid deposition with PROFILE—a steady-state soil chemistry model. Water Air Soil Poll 63:119–143

    Article  CAS  Google Scholar 

  • Warfvinge P, Kalkengren-Grerup U, Sverdrup H, Andersen B (1993) Modeling long term cation supply in acidified forest stands. Environ Pollut 80:209–221

    Article  PubMed  CAS  Google Scholar 

  • Weatherall A, Proe MF, Craig J, Cameron AD, McKay HM, Midwood AJ (2006a) Tracing N, K, Mg and Ca released from decomposing biomass to new tree growth. Part I: a model system simulating harvest residue decomposition on conventionally harvested clearfell sites. Biomass Bioenergy 30:1053–1059

    Article  CAS  Google Scholar 

  • Weatherall A, Proe MF, Craig J, Cameron AD, McKay HM, Midwood AJ (2006b) Tracing N, K, Mg and Ca released from decomposing biomass to new tree growth. Part II: a model system simulating root decomposition on clearfell sites. Biomass Bioenergy 30:1060–1066

    Article  CAS  Google Scholar 

  • Weatherall A, Proe MF, Craig J, Cameron AD, Midwood AJ (2006c) Internal cycling of nitrogen, potassium and magnesium in young Sitka spruce. Tree Physiol 26:673–680

    Article  PubMed  CAS  Google Scholar 

  • Wiegand B A, Chadwick O A, Vitousek P M, Wooden JL (2005) Ca cycling and isotopic fluxes in forested ecosystems in Hawai. Geophys Res Lett 32

  • Yanai RD, Blum JD, Hamburg SP, Arthur MA, Nezat CA, Siccama TG (2005) New insights into calcium depletion in northeastern forests. J For 103:14–20

    Google Scholar 

Download references

Acknowledgments

We would like to thank the following institutions: Région Lorraine and the European Fund for Regional Development (FEDER), GIPECOFOR and the Zone Atelier Moselle (ZAM) for funding the present study. We would also like to thank l’Office National des Forêts, Dominique Gelhaye, Pascal Bonnaud and Serge Didier for their contribution to the Breuil-Chenue site management, sampling and analysis over the years.

We are also grateful to Dr Andrew Weatherall for providing some of the isotopically enriched biomass material used in this study. We also acknowledge the Scottish Government’s Research and Science Division for supporting the work conducted at The James Hutton Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory van der Heijden.

Additional information

Responsible Editor: Ismail Cakmak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

(PDF 182 kb)

Online resource 2

(PDF 183 kb)

Online resource 3

(PDF 117 kb)

Online resource 4

(PDF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Heijden, G., Legout, A., Midwood, A.J. et al. Mg and Ca root uptake and vertical transfer in soils assessed by an in situ ecosystem-scale multi-isotopic (26Mg & 44Ca) tracing experiment in a beech stand (Breuil-Chenue, France). Plant Soil 369, 33–45 (2013). https://doi.org/10.1007/s11104-012-1542-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1542-7

Keywords

Navigation