Skip to main content
Log in

Modulatory effects of Mesorhizobium tianshanense and Glomus intraradices on plant proline and polyamine levels during early plant response of Lotus tenuis to salinity

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The study aims (1) to evaluate the effect of Mesorhizobium tianshanense on plant proline and polyamine levels of Lotus tenuis and its modulatory effect during plant response to short-term salt stress and (2) to compare these effects with those caused by mycorrhizal symbiosis.

Methods

Experiments consisted of a randomized factorial design of two factors: salinity (two levels, 0 and 150 mM NaCl) and symbiosis (three levels, uninoculated, Glomus intraradices, and M. tianshanense).

Results

Salinization led to increased proline levels regardless of plant organ and symbiotic status, excepting mycorrhizal L. tenuis roots. Salinity diminished the total polyamine level of control and rhizobial plants but not in mycorrhizal ones. Variations in the pattern response of the three individual polyamines (putrescine, spermidine, and spermine) differed in accordance with the symbiotic status of the plant, highlighting a divergence on proline and polyamine metabolisms between rhizobial and mycorrhizal symbiosis.

Conclusions

Spermidine and spermine contributed the most with the salt-induced root polyamine increment observed upon salinization in roots of nodulated plants, suggesting that these polyamines might mediate an adaptive role of the plant–M. tianshanense symbiosis in L. tenuis plants growing in a saline environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DAO:

Diamine oxidase

PA:

Polyamines

Put:

Putrescine

Spd:

Spermidine

Spm:

Spermine

References

  • Allan GJ, Francisco-Ortega J, Santos-Guerra A, Boerner E, Zimmer EA (2004) Molecular phylogenetic evidence for the geographic origin and classification of Canary Island Lotus (Fabaceae: Loteae). Mol Phylogenet Evol 32:123–138

    Article  PubMed  CAS  Google Scholar 

  • Aziz A, Martin-Tanguy J, Larher F (1998) Stress-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. Physiol Plantarum 104:195–202

    Article  CAS  Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    PubMed  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Campestre MP, Bordenave CD, Origone AC, Menéndez AB, Ruiz OA, Rodríguez AA, Maiale SJ (2011) Polyamine catabolism is involved in response to salt stress in soybean hypocotyls. J Plant Physiol 168:1234–1240

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay MK, Tabor CW, Tabor H (2002) Absolute requirement of spermidine for growth and cell cycle progression of fission yeast (Schizosaccharomyces pombe). P Natl Acad Sci 99:10330–10334

    Article  CAS  Google Scholar 

  • Cohen SS (1998) A guide to the polyamines. Oxford University Press, New York

    Google Scholar 

  • Colmer TD, Epstein E, Dvorak J (1995) Differential solute regulation in leaf blades of various ages in salt-sensitive wheat and a salt-tolerant wheat × Lophopyrum elongatum (host) A. Löve amphiploid. Plant Physiol 108:1715–1724

    PubMed  CAS  Google Scholar 

  • da Rocha IMA, Vitorello VA, Silva JS, Ferreira-Silva SL, Viégas RA, Silva EN, Silveira JAG (2012) Exogenous ornithine is an effective precursor and the δ-ornithine amino transferase pathway contributes to proline accumulation under high N recycling in salt-stressed cashew leaves. J Plant Physiol 169:41–49

    Article  PubMed  Google Scholar 

  • Diouf D, Duponnois R, Ba AT, Neyra M, Lesueur D (2005) Symbiosis of Acacia auriculiformis and Acacia mangium with mycorrhizal fungi and Bradyrhizobium spp. improves salt tolerance in greenhouse conditions. Aust J Plant Physiol 32:1143–1152

    CAS  Google Scholar 

  • Erdei L, Szegletes Z, Barabas K, Pestenacz A (1996) Responses in polyamine titer under osmotic and salt stress on sorghum and maize seedlings. J Plant Physiol 147:599–603

    Article  CAS  Google Scholar 

  • Estrella MJ, Muñoz S, Soto MJ, Ruiz O, Sanjuan J (2009) Genetic diversity and host range of rhizobia nodulating Lotus tenuis in typical soils of the Salado River Basin (Argentina). Appl Environ Microbiol 75:1088–1098

    Article  PubMed  CAS  Google Scholar 

  • Federico R, Angelini R (1991) Polyamine catabolism in plants. In: Slocum RD, Flores HE (eds.) Biochemistry and physiology of polyamines in plants. Boca Raton, FL,CRC Press, pp 41-56

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Angel Torres M, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  • Fujihara S (2009) Biogenic amines in rhizobia and legume root nodules. Microbes Environ 24:1–13

    Article  PubMed  Google Scholar 

  • Gaspar T, Kevers C, Hausman J-F, Faivre-Rampant O, Boyer N, Dommes J, Penel C, Greppin H (2000) Integrating phytohormone metabolism and action with primary biochemical pathways. I. Interrelationships between auxins, cytokinins, ethylene and polyamines in growth and development processes. In: Greppin H, Penel C, Broughton WJ, Strasser R (eds) Integrated plant systems. University of Geneva, Switzerland, pp 163–191

    Google Scholar 

  • Ghosh N, Adak MK, Ghosh PD, Gupta S, Sen Gupta DN, Mandal C (2011) Differential responses of two rice varieties to salt stress. Plant Biotechnol Rep 5:89–103

    Article  Google Scholar 

  • Goicoechea N, Szalai NG, Antolín MC, Sánchez-Díaz M, Paldi E (1998) Influence of arbuscular mycorrhizae and Rhizobium on free polyamines and proline levels in water-stressed alfalfa. J Plant Physiol 153:706–711

    Article  CAS  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Phys 51:463–499

    CAS  Google Scholar 

  • Hennion F, Frenot Y, Martin-Tanguy J (2006) High flexibility in growth and polyamine composition of the crucifer Pringlea antiscorbutica in relation to environmental conditions. Physiol Plant 127:212–224

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DL (1950) The water culture method for growing plants without soil. Calif Agricult Exp Stat Circ 374:1–39

    Google Scholar 

  • Jiménez-Bremont JF, Ruiz OA, Rodríguez-Kessler M (2007) Modulation of spermidine and spermine levels in maize seedlings subjected to long-term salt stress. Plant Physiol Bioch 45:812–821

    Article  Google Scholar 

  • Jiménez-Zurdo JI, García-Rodríguez FM, Toro N (1997) The Rhizobium meliloti putA gene: its role in the establishment of the symbiotic interaction with alfalfa. Mol Microbiol 23:85–93

    Article  PubMed  Google Scholar 

  • Jindal V, Atwala A, Sekhon BS, Singh R (1993) Effect of vesicular-arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity. Plant Physiol Bioch 31:475–481

    CAS  Google Scholar 

  • King ND, Hojnacki D, O'Brian MR (2000) The Bradyrhizobium japonicum proline biosynthesis gene proC is essential for symbiosis. Appl Environ Microbiol 66:5469–5471

    Article  PubMed  CAS  Google Scholar 

  • Kirkbride JH Jr (2006) The scientific name of narrow-leaf trefoil. Crop Sci 46:2169–2170

    Article  Google Scholar 

  • Kohl DH, Schubert KR, Carter MB, Hagedorn CH, Shearer G (1988) Proline metabolism in N2-fixing root nodules: energy transfer and regulation of purine synthesis. P Natl Acad Sci 85:2036–2040

    Article  CAS  Google Scholar 

  • Kytöviita M-M, Sarjala T (1997) Effects of defoliation and symbiosis on polyamine levels in pine and birch. Mycorrhiza 7:107–111

    Article  Google Scholar 

  • Legocka J, Kluk A (2005) Effect of salt and osmotic stress on changes in polyamine content and arginine decarboxylase activity in Lupinus luteus seedlings. J Plant Physiol 162:662–668

    Article  PubMed  CAS  Google Scholar 

  • Liptay A, Davidson D (1971) Coleoptile growth: variation in elongation patterns of individual coleoptiles. Ann Bot 35:91–1002

    Google Scholar 

  • Maiale S, Sanchez D, Guirado A, Vidal A, Ruiz O (2004) Spermine accumulation under salt stress. J Plant Physiol 161:35–42

    Article  PubMed  CAS  Google Scholar 

  • Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant 43:491–500

    Article  CAS  Google Scholar 

  • Marcé M, Brown DS, Capell T, Figueras X, Tiburcio AF (1995) Rapid high-performance liquid chromatographic method for the quantitation of polyamines as their dansyl derivatives: application to plant and animal tissues. J Chromatogr B Biomed Appl 666:329–335

    Article  PubMed  Google Scholar 

  • Márquez AJ, Betti M, García-Calderón M, Pal'ove-Balang P, Díaz P, Monza J (2005) Nitrate assimilation in Lotus japonicus. J Exp Bot 56:1741–1749

    Article  PubMed  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Pérez-Amador MA, Carbonell J, Granell A (1995) Expression of arginine decarboxylase is induced during early fruit development and in young tissues of Pisum sativum (L.). Plant Mol Biol 28:997–1009

    Article  PubMed  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. T Brit Mycol Soc 55:158–161

    Article  Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4:210–220

    CAS  Google Scholar 

  • Radyukina NL, Mapelli S, Ivanov YV, Kartashov AV, Brambilla I, Kuznetsov VV (2009) Homeostasis of polyamines and antioxidant systems in roots and leaves of Plantago major under salt stress. Russ J Plant Physl 56:323–331

    Article  CAS  Google Scholar 

  • Rodríguez AA, Maiale SJ, Menéndez AB, Ruiz OA (2009) Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress. J Exp Bot 60:4249–4262

    Article  PubMed  Google Scholar 

  • Sannazzaro A, Ruiz O, Albertó E, Menéndez A (2004) Presence of different arbuscular mycorrhizal infection patterns in roots of Lotus glaber plants growing in the Salado River basin. Mycorrhiza 14:139–142

    Article  PubMed  Google Scholar 

  • Sannazzaro AI, Echeverria M, Albertó EO, Ruiz OA, Menéndez AB (2007) Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol Bioch 45:39–46

    Article  CAS  Google Scholar 

  • Sannazzaro A, Bergottini V, Paz R, Castagno L, Menéndez A, Ruiz O, Pieckenstain F, Estrella M (2011) Comparative symbiotic performance of native rhizobia of the Flooding Pampa and strains currently used for inoculating Lotus tenuis; in this region. Anton Leeuw Int J G 99:371–379

    Article  Google Scholar 

  • Santa-Cruz A, Acosta M, Rus A, Bolarin MC (1999) Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol Bioch 37:65–71

    Article  CAS  Google Scholar 

  • Schmidt G, Zotz G (2001) Ecophysiological consequences of differences in plant size: in situ carbon gain and water relations of the epiphytic bromeliad, Vriesea anguinolenta. Plant Cell Environ 24:101–112

    Article  Google Scholar 

  • Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin and abscisic acid. Plant Physiol 125:1591–1602

    Article  PubMed  CAS  Google Scholar 

  • Shamseldin A, Nyalwidhe J, Werner D (2006) A proteomic approach towards the analysis of salt tolerance in Rhizobium etli and Sinorhizobium meliloti strains. Curr Microbiol 52:333–339

    Article  PubMed  CAS  Google Scholar 

  • Shaul-Keinan O, Gadkar V, Ginzberg I, Grünzweig JM, Chet I, Elad Y, Wininger S, Belausov E, Eshed Y, Atzmon N, Ben-Tal Y, Kapulnik Y (2002) Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices. New Phytol 154:501–507

    Article  CAS  Google Scholar 

  • Smith TA (1985) Polyamines. Ann Rev Plant Physio 36:117–143

    Article  CAS  Google Scholar 

  • Soliman ASh, Shanan NT, Massoud ON, Swelim DM (2012) Improving salinity tolerance of Acacia saligna (Labill.) plant by arbuscular mycorrhizal fungi and Rhizobium inoculation. Afr J Biotechnol 11:1259–1266

    CAS  Google Scholar 

  • Sotiropoulos TE, Therios IN, Tsirakoglou V, Dimassi KN (2007) Response of the quince genotypes BA 29 and EMA used as pear rootstocks to boron and salinity. Int J Fruit Sci 6:93–101

    Article  Google Scholar 

  • Stetsenko LA, Rakitin VY, Shevyakova NI, Kuznetsov VV (2009) Organ-specific changes in the content of free and conjugated polyamines in Mesembryanthemum crystallinum plants under salinity. Russ J Plant Physl+ 56:808–813

    Article  CAS  Google Scholar 

  • Stewart GR, Larher F (1980) Accumulation of amino acids and related compounds in relation to environmental stress. In: Miflin BJ (ed) The biochemistry of plants, Vol 5. Academic Press, New York, pp 609–635

    Google Scholar 

  • Su G, Bai X (2008) Contribution of putrescine degradation to proline accumulation in soybean leaves under salinity. Biol Plantarum 52:796–799

    Article  CAS  Google Scholar 

  • Tal M, Katz A, Heikin H, Dehan K (1979) Salt tolerande in the wild relatives of the cultivated tomato: porline accumulation in Lycopersicon esculentum Mill., L. peruvianum Mill. and Solanum pennelli Cor. treated with NaCI and polyethylene glycol. New Phytol 82:349–355

    Article  CAS  Google Scholar 

  • Theiss C, Bohley P, Voigt J (2002) Regulation by polyamines of ornithine decarboxylase activity and cell division in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol 128:1470–1479

    Article  PubMed  CAS  Google Scholar 

  • Tonon G, Kevers C, Faivre-Rampant O, Graziani M, Gaspar T (2004) Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. J Plant Physiol 161:701–708

    Article  PubMed  CAS  Google Scholar 

  • Trotel P, Bouchereau A, Niogret MF, Larher F (1996) The fate of osmo-accumulated proline in leaf discs of rape (Brassica napus L.) incubated in a medium of low osmolarity. Plant Sci 118:31–45

    Article  CAS  Google Scholar 

  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)—differential response in salt-tolerant and sensitive varieties. Plant Sci 165:1411–1418

    Article  CAS  Google Scholar 

  • Wang K, Liu Y, Dong K, Dong J, Kang J, Yang Q, Zhou H, Sun Y (2011) The effect of NaCl on proline metabolism in Saussurea amara seedlings. Afr J Biotechnol 10:2886–2893

    CAS  Google Scholar 

  • Zhang J, Zhang Y, Du Y, Chen S, Tang H (2011) Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress. J Proteome Res 10:1904–1914

    Article  PubMed  CAS  Google Scholar 

  • Zhao F-G, Sun C, Liu Y-L (2001) Ornithine pathway in proline biosynthesis activated by salt stress in barley seedlings. Acta Bot Sin 43:36–40

    Google Scholar 

  • Zotz G (1997) Photosynthetic capacity increases with plant size. Bot Acta 110:306–308

    CAS  Google Scholar 

  • Zotz G (2000) Size dependence in the reproductive allocation of Dimerandra emarginata, an epiphytic orchid. Ecotropica 6:95–99

    Google Scholar 

  • Zotz G, Ziegler H (1999) Size-related differences in carbon isotope discrimination in the epiphytic orchid, Dimerandra emarginata. Naturwissenschaften 86:39–40

    Article  CAS  Google Scholar 

  • Zotz G, Thomas V, Hartung W (2001) Ecophysiological consequences of differences in plant size: abscisic acid relationships in the epiphytic orchid Dimerandra emarginata. Oecologia 129:179–185

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina), Agencia Nacional de Promoción Científica y Tecnológica (PICT 20517), UBACYT x143. M.E is CONICET scholarship holder. A.B.M. is a Universidad de Buenos Aires (UBA) and CONICET researcher, and O.A.R. and A.I.S are CONICET researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariela Echeverria.

Additional information

Responsible Editor: Katharina Pawlowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Echeverria, M., Sannazzaro, A.I., Ruiz, O.A. et al. Modulatory effects of Mesorhizobium tianshanense and Glomus intraradices on plant proline and polyamine levels during early plant response of Lotus tenuis to salinity. Plant Soil 364, 69–79 (2013). https://doi.org/10.1007/s11104-012-1312-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1312-6

Keywords

Navigation