Skip to main content

Advertisement

Log in

A re-appraisal of the biology and terminology describing rhizobial strain success in nodule occupancy of legumes in agriculture

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aim

To ensure that the majority of nodules on a legume are occupied by the inoculant strain poses a significant challenge to maximising nitrogen fixation in agricultural settings. The aim of this review is to establish a set of common terms with which to classify and interrogate experiments that investigate nodule occupancy in legumes.

Results

At least six different terminologies have been developed to discuss experimental outcomes where legumes have access to more than one rhizobial strain. In this review we nominate a set of preferred terms: promiscuous, exclusive, selective and non-selective nodulation in an attempt to provide conformity to the general scientific pursuit of understanding the circumstances leading to nodule occupancy in legumes when more than one strain has the opportunity to form the nodule.

Discussion

To maximise nitrogen fixation from legumes, a primary challenge is to prevent rhizobia resident in the soil from dominating nodule occupation, since whilst they may be numerically dominant, they are often not optimally matched for nitrogen fixation with the introduced legume. It is apparent, however, that at times the legume host is able to preferentially enter into symbiosis with a fully effective strain, even if an ineffective strain is present and numerically dominant.

Conclusion

This manuscript reviews the terminology currently applied to nodulation outcomes in introduced legume symbioses where more than one strain type is available to infect the plant. We suggest adoption of a more stringent terminology as the research discipline matures to exploit genome sequence information. We have suggested the term “selective nodulation” to describe certain nodulation outcomes that are not based upon numerical supremacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguilar OM, Riva O, Peltzer E (2004) Analysis of Rhizobium etli and of its symbiosis with wild Phaseolus vulgaris supports coevolution in centres of host diversification. Proc Nat Acad Sci USA 101:13548–13553

    Article  PubMed  CAS  Google Scholar 

  • Amarger N (1981) Competition for nodule formation between effective and ineffective strains of Rhizobium meliloti. Soil Biol Biochem 13:475–480

    Article  Google Scholar 

  • Amarger N, Lobreau JP (1982) Quantitative study of nodulation competitiveness in Rhizobium strains. Appl Environ Microbiol 44:583–588

    PubMed  CAS  Google Scholar 

  • Anyango B, Wilson K, Giller K (1998) Competition in Kenyan soils between Rhizobium leguminosarum biovar phaseoli strain Kim5 and R. tropici strain CIAT899 using the gusA marker gene. Plant Soil 204:69–78

    Article  CAS  Google Scholar 

  • Baldwin IL, Fred EB (1929) Nomenclature of the root nodule bacteria of the Leguminosae. J Bact 17:141–150

    PubMed  CAS  Google Scholar 

  • Ballard RA, Charman N (2000) Nodulation and growth of pasture legumes with naturalised soil rhizobia 1. Annual Medicago spp. Aust J Exp Agric 40:939–948

    Article  Google Scholar 

  • Barran LR, Bromfield ESP (1997) Competition among rhizobia for nodulation of legumes. In: McKersie BD, Brown DCW (eds) Biotechnology and the Improvement of Forage Legumes. University Press, Cambridge, pp 343–374

    Google Scholar 

  • Bottomley PJ (1992) Ecology of Bradyrhizobium and Rhizobium. In: Stacy G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, NY, pp 293–348

    Google Scholar 

  • Boundy-Mills KL, Kosslack RM, Tully RE, Pueppke SG, Lohrke SM, Sadowsky MJ (1994) Induction of the Rhizobium fredii nod box-independent nodulation gene nolJ requires a functional nodD1 gene. Mol Plant-Micr Inter 7:305–308

    Article  CAS  Google Scholar 

  • Bringhurst RM, Cardon ZG, Gage DJ (2001) Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Proc Nat Acad Sci USA 98:4540–4545

    Article  PubMed  CAS  Google Scholar 

  • Brockhurst MA, Fenton A, Roulston B, Rainey PB (2006) The impact of phages on interspecific competition in experimental populations of bacteria. BMC Ecol 6:19

    Article  PubMed  CAS  Google Scholar 

  • Brockwell J (2001) Sinorhizobium meliloti in Australian soils: population studies of the root-nodule bacteria for species of Medicago in soils of the Eyre Peninsula, South Australia. Aust J Exp Agric 41:753–762

    Article  Google Scholar 

  • Brockwell J, Katznelson J (1976) Symbiotic characteristics of Rhizobium trifolii from Israel in association with 10 species of Trifolium. Aust J Agric Res 27:799–810

    Article  Google Scholar 

  • Brockwell J, Bottomley PJ (1995) Recent advances in inoculant technology and prospects for the future. Soil Biol Biochem 27:683–697

    Article  CAS  Google Scholar 

  • Brockwell J, Hely FW, Neal-Smith CA (1966) Some symbiotic characteristics of rhizobia responsible for spontaneous, effective field nodulation of Lotus hispidus. Aust J Exp Agric Anim Hus 6:365–370

    Article  Google Scholar 

  • Brockwell J, Gault RR, Zorin M, Roberts MJ (1982) Effects of environmental variables on the competition between inoculum strains and naturalised populations of Rhizobium trifolium for nodulation of Trifolium subterraneum L. and on rhizobia persistence in the soil. Aust J Agric Res 33:803–815

    Article  Google Scholar 

  • Brockwell J, Bottomley PJ, Thies JE (1995) Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. Plant Soil 174:143–180

    Article  CAS  Google Scholar 

  • Bromfield ESP (1984a) The preference for strains of Rhizobium meliloti by cultivars of Medicago sativa grown on agar. Can J Microbiol 30:1179–1186

    Article  Google Scholar 

  • Bromfield ESP (1984b) Variation in preference for Rhizobium meliloti within and between Medicago sativa cultivars grown in soil. Appl Environ Microbiol 48:1231–1236

    PubMed  CAS  Google Scholar 

  • Broughton WJ, Samprey U, Bohlool BB (1982) Competition for nodulation of Pisum sativum cv. Afghanistan requires live rhizobia and a plant component. Can J Microbiol 28:162–168

    Article  Google Scholar 

  • Broughton WJ, Jabbouri S, Perret X (2000) Keys to symbiotic harmony. J Bacteriol 182:5641–5652

    Article  PubMed  CAS  Google Scholar 

  • Caldwell BE, Vest G (1968) Nodulation interactions between soybean (Glycine max) genotypes and serogroups of Rhizobium japonicum. Crop Sci 8:680–682

    Article  Google Scholar 

  • Chandra R, Pareek RP (1985) Role of host-genotype in effectiveness and competitiveness of chick pea (Cicer arientinum) rhizobium. Trop Agric (Trinidad) 62:90–94

    Google Scholar 

  • Cregan PB, Keyser HH (1986) Host restriction of nodulation by Bradyrhizobium japonicum strain USDA 123 in soybean. Crop Sci 26:911–916

    Article  Google Scholar 

  • Date RA, Brockwell J (1978) Rhizobium strain competition and host interaction for nodulation. In: Wilson JR (ed) Plant relations in pastures. CSIRO press, Melbourne, Australia, pp 202–216

    Google Scholar 

  • Davis EO, Evans IJ, Johnston AWB (1988) Identification of nodX, a gene that allows Rhizobium leguminosarum bv. viciae strain TOM to nodulate Afghanistan peas. Mol Gen Genet 212:531–535

    Article  PubMed  CAS  Google Scholar 

  • Denison RF (2000) Legume sanctions and the evolution of symbiotic cooperation by rhizobia. The Amer Natl 156:567–576

    Article  Google Scholar 

  • Denison RF, Kiers ET (2004) Lifestyle alternatives for rhizobia: mutualism, parasitism, and forgoing symbiosis. FEMS Microbiol Let 237:187

    Article  CAS  Google Scholar 

  • Denton MD, Coventry DR, Howieson JG, Murphy PJ, Bellotti WD (2002) Competition between inoculated and naturalized R. leguminosarum bv. trifolii for nodulation of annual clovers in alkaline soils. Aust J Agric Res 53:1019–1026

    Article  CAS  Google Scholar 

  • Denton MD, Reeve WG, Howieson JG, Coventry DR (2003) Competitive abilities of common field isolates and a commercial strain of Rhizobium leguminosarum bv. trifolii for clover nodule occupancy. Soil Biol Biochem 35:1039–1048

    Article  CAS  Google Scholar 

  • Devine TE (1984) Inheritance of soybean nodulation response with a fast-growing strain of Rhizobium. J Heredity 75:359–361

    Google Scholar 

  • Devine TE, Kuykendall LD (1996) Host genetic control of symbiosis in soybean (Glycine max L.). Plant Soil 186:173–187

    Article  CAS  Google Scholar 

  • Dowling DN, Broughton WJ (1986) Competition for nodulation of legumes. Ann Rev Microbiol 40:131–157

    Article  CAS  Google Scholar 

  • Downie JA, Parniske M (2002) Plant biology: locks, keys and symbioses. Nature 420:369–370

    Article  PubMed  CAS  Google Scholar 

  • Ferrey ML, Graham PH, Russelle MJ (1994) Nodulation efficiency of Bradyrhizobium japonicum strains with genotypes of soybean varying in the ability to resist nodulation. Can J Microbiol 40:456–460

    Article  Google Scholar 

  • Firmin JL, Wilson KE, Carlson RW, Davies AE, Downie JA (1993) Resistance to nodulation of cv. Afghanistan peas is overcome by nodX, which mediates an O-acetylation of the Rhizobium leguminosarum lipo-oligosaccharide nodulation factor. Mol Microbiol 10:351–360

    Article  PubMed  CAS  Google Scholar 

  • George MLC, Robert F (1991) Autoregulatory response of Phaseolus vulgaris L. to symbiotic mutants of Rhizobium leguminosarum bv. phaseoli. Appl Environ Microbiol 57:2687–2692

    PubMed  CAS  Google Scholar 

  • Gibson AH (1968) Nodulation failure of Trifolium subterraneum L. cv. Woogenellup (syn. Marrar). Aust J Agric Res 19:907–918

    Article  Google Scholar 

  • Gibson AH, Curnow BC, Bergersen FJ, Brockwell J, Robinson AC (1975) Studies of field strains of Rhizobium trifolii associated with Trifolium subterraneum L. pastures in south-eastern Australia. Soil Biol Biochem 7:95–102

    Article  Google Scholar 

  • Graham PH (2008) Ecology of the root-nodule bacteria of legumes. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing leguminous symbioses. Springer, Dordrecht, pp 23–43

    Google Scholar 

  • Hahn M, Studer D (1986) Competitiveness of a nif - Bradyrhizobium japonicum mutant against the wild-type strain. FEMS Microbiol Let 33:143–148

    Google Scholar 

  • Hahn M, Hennecke H (1988) Cloning and mapping of a novel nodulation region from Bradyrhizobium japonicum by genetic complementation of a deletion mutant. Appl Environ Microbiol 54:55–61

    PubMed  CAS  Google Scholar 

  • Hardarson G, Jones DG (1979a) Effect of temperature on competition amongst strains of Rhizobium trifolii for nodulation of two white clover varieties. Ann Appl Biol 92:229–236

    Article  Google Scholar 

  • Hardarson G, Jones DG (1979b) The inheritance of preference for strains of Rhizobium trifolii by white clover (Trifolium repens). Ann Appl Biol 92:329–333

    Article  Google Scholar 

  • Hardarson G, Heichel GH, Vance CP, Barnes DK (1982a) Evaluation of alfalfa and Rhizobium meliloti for compatibility in nodulation and nodule effectiveness. Crop Sci 21:562–567

    Article  Google Scholar 

  • Hardarson G, Heichel GH, Barnes DK, Vance CP (1982b) Rhizobial strain preference of alfalfa populations selected for characteristics associated with N2 fixation. Crop Sci 22:55–58

    Article  Google Scholar 

  • Hennecke H (1990) Nitrogen fixation genes involved in the Bradyrhizobium japonicum-soybean symbiosis. FEBS let 268:422–426

    Article  CAS  Google Scholar 

  • Herridge DF (2008) Inoculation technology for legumes. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing leguminous symbioses. Springer, Dordrecht, pp 77–109

    Google Scholar 

  • Hogg B, Davies AE, Wilson KE, Bisseling T, Downie JA (2002) Competitive nodulation blocking of cv. Afghanistan pea is related to high levels of nodulation factors made by some strains of Rhizobium leguminosarum bv. viciae. Mol Plant Micro Intl 15:60–68

    Article  CAS  Google Scholar 

  • Holl FB (1975) Host plant control of the inheritance of dinitrogen fixation in the Pisum Rhizobium symbiosis. Euphytica 24:767–770

    Article  Google Scholar 

  • Holland AA (1966) Serological characteristics of certain root-nodule bacteria of legumes. Anton van Leeuwen J Micro Serol 32:410–418

    Article  CAS  Google Scholar 

  • Howieson JG, Ballard R (2004) Optimising the legume symbiosis in stressful and competitive environments within southern Australia – some contemporary thoughts. Soil Biol Biochem 36:1261–1273

    Article  CAS  Google Scholar 

  • Howieson JG, Ewing MA (1986) Acid tolerance in the Rhizobium meliloti-Medicago symbiosis. Aust J Agric Res 36: 55–64.

    Article  Google Scholar 

  • Howieson JG, Loi A, Carr SJ (1995) Biserrula pelecinus L. - a legume pasture species with potential for acid, duplex soils which is nodulated by a unique root-nodule bacteria. Aust J Agric Res 46:997–1009

    Article  Google Scholar 

  • Howieson JG, O'Hara GW, Carr SJ (2000) Changing roles for legumes in Mediterranean agriculture: developments from an Australian perspective. Field Crops Res 65:107–122

    Article  Google Scholar 

  • Hungria M, Franchini J, Campo R, Graham PH (2005) The importance of nitrogen fixation to soybean cropping in South America. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing leguminous symbioses. Springer, Dordrecht, pp 25–42

    Google Scholar 

  • Ireland JA, Vincent JM (1968) A quantitative study of competition for nodule formation. Trans 9th Int Con Soil Sci Soc 2:85–93

    Google Scholar 

  • Johnson HW, Means UM (1960) Interactions between genotypes of soybeans and genotypes of nodulating bacteria. Agr J 52:651–654

    Article  Google Scholar 

  • Jones DG, Russell PE (1972) The application of immunofluorescence techniques to host plant/nodule bacteria selectivity experiments using Trifolium repens. Soil Biol Biochem 4:277–280

    Article  Google Scholar 

  • Jones DG, Hardarson G (1979) Variation within and between white clover varieties in their preference for strains of Rhizobium trifolii. Ann Appl Biol 92:221–228

    Article  Google Scholar 

  • Jones DG, Morley SJ (1981) The effect of pH on host plant ‘preference’ for strains of Rhizobium trifolii using fluorescent ELISA for strain identification. Ann Appl Biol 97:183–190

    Article  Google Scholar 

  • Kiers ET, West SA, Denison RF (2008) Maintaining cooperation in the legume-rhizobia symbiosis: identifying selection pressures and mechanisms. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing leguminous symbioses. Springer, Dordrecht, pp 59–76

    Google Scholar 

  • Laguerre G, Mazurier SI, Amarger N (1992) Plasmid profiles and restriction length polymorphism of Rhizobium leguminosarum bv. viciae in field populations. FEMS Micro Eco 101:17–26

    CAS  Google Scholar 

  • Lewis-Henderson WR, Djordjevic MA (1991) nodT, a positively-acting cultivar specificity determinant controlling nodulation of Trifolium subterraneum by Rhizobium leguminosarum biovar trifolii. Plant Mol Biol 16:515–526

    Article  PubMed  CAS  Google Scholar 

  • Lie TA (1978) Symbiotic specialization in pea plants: the requirement of specific Rhizobium strains for peas from Afghanistan. Annal App Biol 88:462–465

    Article  Google Scholar 

  • Lie TA (1984) Host genes in Pisum sativum L. conferring resistance to European Rhizobium leguminosarum strains. Plant Soil 82:415–425

    Article  Google Scholar 

  • Lindstrom K, Murwira M, Willems A, Altier N (2010) The biodiversity of beneficial microbe-host mutualism: the case of rhizobia. Res Microbiol 161:453–463

    Article  PubMed  Google Scholar 

  • Lohrke SM, Orf JH, Martinez-Romero E, Sadowsky MJ (1995) Host-controlled restriction of nodulation by Bradyrhizobium japonicum strains in serogroup 110. Appl Environ Microbiol 61:2378–2383

    PubMed  CAS  Google Scholar 

  • Loi A, Howieson JG, Nutt BJ, Carr SJ (2005) A second generation of annual pasture legumes and their potential for inclusion in Mediterranean-type farming systems: a review. Aust J Exp Agric 45:289–299

    Article  Google Scholar 

  • Madsen LH, Tirichine L, Jurkiewicz A, Sullivan JT, Heckmann AB, Bek AS, Ronson CW, James EK, Stougaard J (2010) The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Natl Com 1:1–12

    Article  CAS  Google Scholar 

  • Marques Pinto C, Yao PY, Vincent JM (1974) Nodulating competitiveness amongst strains of Rhizobium meliloti and R. trifolii. Aust J Agric Res 25:317–329

    Article  Google Scholar 

  • Martinez-Romero E (2003) Diversity of Rhizobium-Phaseolus vulgaris symbiosis: overview and perspectives. Plant Soil 252:11–23

    Article  CAS  Google Scholar 

  • Masterson CL, Sherwood MT (1974) Selection of Rhizobium trifolii by white and sub clovers. Irish J Agric Res 13:91–99

    Google Scholar 

  • Materon LA, Vincent JM (1980) Host specificity and interstrain competition with soybean rhizobia. Field Crop Res 3:215–224

    Article  Google Scholar 

  • Materon LA (1994) Delayed inoculation and competition of Rhizobium meliloti in annual Medicago species. Appl Soil Ecol 1:255–260

    Article  Google Scholar 

  • McDermott TR, Graham PH (1989) Bradyrhizobium japonicum inoculant mobility, nodule occupancy, and acetylene reduction in the soybean root system. Appl Environ Microbiol 55:2493–2498

    PubMed  CAS  Google Scholar 

  • McInnes A, Haq K (2003) Contributions of rhizobia to soil nitrogen fertility. In: Abbott LK, Murphy DV (eds) Soil biological fertility: a key to sustainable land use in agriculture. Kluwer Academic Publishers, Dordrecht, pp 99–108

    Google Scholar 

  • McInnes A, Thies JE, Abbott LK, Howieson JG (2004) Structure and diversity among rhizobial strains, populations and communities—a review. Soil Biol Biochem 36:1295–1308

    Article  CAS  Google Scholar 

  • Meschini EP, Blanco FA, Zanetti ME, Beker MP, Küster H, Pühler A, Aguilar OM (2008) Host genes involved in nodulation preference in common bean (Phaseolus vulgaris)–Rhizobium etli symbiosis revealed by suppressive subtractive hybridization. Mol Plant-Microbe Interact 21:459–468

    Article  PubMed  CAS  Google Scholar 

  • Mellor HY, Glen AR, Arwas R, Dilworth MJ (1987) Symbiotic and competitive properties of motility mutants of Rhizobium trifolii TA1. Archiv Microbiol 148:34–39

    Article  CAS  Google Scholar 

  • Michiels J, Dombrecht B, Vermeiren N, Xi C, Luyten E, Vanderleyden J (1998) Phaseolus vulgaris is a non-selective host for nodulation. FEMS Microbiol Ecol 26:193–205

    Article  CAS  Google Scholar 

  • Montealegre C, Graham PH, Kipe-Nolt JA (1995) Preference in the nodulation of Phaseolus vulgaris cultivar RAB39. Can J Microbiol 41:992–998

    Article  CAS  Google Scholar 

  • Montealegre C, Graham PH (1996) Preference in the nodulation of Phaseolus vulgaris cv. RAB39.II. Effect of delayed inoculation or low cell representation in the inoculant on nodule occupancy by Rhizobium tropici UMR1899. Can J Microbiol 42:844–850

    Article  CAS  Google Scholar 

  • Mpepereki S, Javaheri F, Davis P, Giller KE (2000) Soyabeans and sustainable agriculture: promiscuous soybeans in southern Africa. Field Crop Res 65:137–149

    Article  Google Scholar 

  • Murphy PJ, Wexler M, Grzemski W, Rao JP, Gordon D (1995) Rhizopines: their role in symbiosis and competition. Soil Biol Biochem 27:525–529

    Article  CAS  Google Scholar 

  • Nandasena KG, O'Hara GW, Tiwari RP, Howieson JG (2006) Rapid in situ evolution of nodulating strains for Biserrula pelecinus L. through lateral transfer of a symbiosis island from the original Mesorhizobial inoculant. Appl Environ Microbiol 72:7365–7367

    Article  PubMed  CAS  Google Scholar 

  • Nandasena KG, O'Hara GW, Tiwari RP, Sezmis E, Howieson JG (2007) In situ lateral transfer of symbiosis islands results in rapid evolution of diverse competitive strains of mesorhizobia suboptimal in symbiotic nitrogen fixation on the pasture legume Biserrula pelecinus L. Environ Microbiol 9:2496–2511

    Article  PubMed  CAS  Google Scholar 

  • Nandasena KG, O'Hara GW, Tiwari RP, Willems A, Howieson JG (2009) Mesorhizobium australicum sp. nov. and Mesorhizobium opportunistum sp. nov., isolated from Biserrula pelecinus L. in Australia. Int J Syst Evol Microbiol 59:2140–2147

    Article  PubMed  CAS  Google Scholar 

  • Neilan J, Dowling DN, Dunican LK (1984) Host selection of Rhizobium trifolii on Trifolium repens (clover). Biochem Soc Trans 12:492

    CAS  Google Scholar 

  • Nicol H, Thornton HG (1941) Competition between related strains of nodule bacteria and its influence on infection of the legume host. Proc Roy Soc Lond, Series B 130:32–59

    Article  Google Scholar 

  • O’Hara GW (2001) Nutritional constraints on root nodule bacteria affecting symbiotic nitrogen fixation: a review. Aust J Exp Agric 52:417–433

    Article  Google Scholar 

  • Parniske M, Downie JA (2003) Locks, keys and symbioses. Nature 425:569–570

    Article  PubMed  CAS  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    Article  PubMed  CAS  Google Scholar 

  • Pueppke SG, Broughton WJ (1999) Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant-Microbe Interact 12:293–318

    Article  PubMed  CAS  Google Scholar 

  • Robinson AC (1969a) Competition between effective and ineffective strains of Rhizobium trifolii in the nodulation of Trifolium subterraneum. Aust J Agric Res 20:827–841

    Article  Google Scholar 

  • Robinson AC (1969b) Host selection for effective Rhizobium trifolii by red clover and sub clover in the field. Aust J Agric Res 20:1053–1060

    Article  Google Scholar 

  • Roughley RJ, Blowes WM, Herridge DF (1976) Nodulation of Trifolium subterraneum by introduced rhizobia in competition with naturalized strains. Soil Biol Biochem 8:403–407

    Article  Google Scholar 

  • Russell PF, Jones DG (1975) Variation in selection of Rhizobium trifolii by varieties of red and white clover. Soil Biol Biochem 7:15–18

    Article  Google Scholar 

  • Rynne FG, Glenn AR, Dilworth MJ (1994) Effect of mutations in aromatic catabolism on the persistence and competitiveness of Rhizobium legvminosarum bv. trifolii. Soil Biol Biochem 26:703–710

    Article  CAS  Google Scholar 

  • Sadowsky MJ, Cregan PB (1992) The soybean Rj4 allele restricts nodulation by Bradyrhizobium japonicum serogroup 123 strains. Appl Environ Microbiol 58:720–723

    PubMed  CAS  Google Scholar 

  • Sadowsky MJ, Graham PH (1998) Soil biology of the Rhizobiaceae. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) Molecular biology of model plant-associated bacteria. Kluwer Academic Publishers, Dordrecht, pp 155–172

    Google Scholar 

  • Sadowsky MJ, Kosslak RM, Madrzak CJ, Golinska B, Cregan PB (1995) Restriction of nodulation by Bradyrhizobium japonicum is mediated by factors present in the roots of Glycine max. Appl Environ Microbiol 61:832–836

    PubMed  CAS  Google Scholar 

  • Sadowsky MJ, Tully RE, Cregan PB, Keyser HH (1987) Genetic diversity in Bradyrhizobium japonicum serogroup 123 and its relation to genotype-specific nodulation of soybeans. Appl Environ Microbiol 53:2624–2630

    PubMed  CAS  Google Scholar 

  • Sessitsch A, Howieson JG, Perret X, Antoun H, Martínez-Romero E (2002) Advances in Rhizobium research. Crit Rev Plant Sci 21:323–378

    Article  CAS  Google Scholar 

  • Sherwood MT, Masterson CL (1974) Importance of using the correct test host in assessing the effectiveness of indigenous populations of Rhizobium trifolii. Irish J Agric Res 13:101–108

    Google Scholar 

  • Simms EL, Taylor DL (2002) Partner choice in nitrogen-fixation mutualisms of legumes and rhizobia. Integ Compar Biol 42:369–380

    Article  Google Scholar 

  • Simms EL, Taylor DL, Povich J, Shefferson RP, Sachs JL, Urbina M, Tausczik Y (2005) An empirical test of partner choice mechanisms in a wild legume-Rhizobium interaction. Proc Royal Soc London B 273:77–81

    Article  Google Scholar 

  • Singer M, Holding AJ, King J (1964) The response of Trifolium repens to inocula containing varying proportions of effective and ineffective rhizobia. 8th Intl Congr Soil Sci Bucharest, Romania, pp1021-1025

  • Slattery JF, Coventry DR (1993) Variation of soil populations of Rhizobium leguminosarum bv. trifolii and the occurrence of inoculant rhizobia in nodules of sub clover after pasture renovation in north-eastern Victoria. Soil Biol Biochem 25:1725–1730

    Article  Google Scholar 

  • Streeter JG (1994) Failure of inoculant rhizobia to overcome the dominance of resident strains for nodule formation. Can J Microbiol 40:513–522

    Article  Google Scholar 

  • Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW (1995) Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci 92:8985–8989

    Article  PubMed  CAS  Google Scholar 

  • Svenning MM, Gudmundssont J, Fagerli IL, Leinonen P (2001) Competition for nodule occupancy between introduced strains of Rhizobium leguminosarum bv. trifolii and its influence on plant production. Ann Botany 88:781–787

    Article  Google Scholar 

  • Talbi C, Delgado MJ, Girard L, Ramírez-Trujillo A, Caballero-Mellado J, Bedmar EJ (2010) Burkholderia phymatum strains capable of nodulating Phaseolus vulgaris are present in Moroccan soils. Appl Environ Microbiol 76:4587–4591

    Article  PubMed  CAS  Google Scholar 

  • Thies JE, Bohlool BB, Singleton PW (1991a) Subgroups of the cowpea miscellany: symbiotic specificity within Bradyrhizobium spp. for Vigna unguiculata, Phaseolus lunatus, Arachis hypogaea, and Macroptilium atropurpureum. Appl Environ Microbiol 57:1540–1545

    PubMed  CAS  Google Scholar 

  • Thies JE, Singleton PW, Bohlool BB (1991b) Modelling symbiotic performance of introduced rhizobia in the field by use of indices of resident population size and nitrogen status of the soil. Appl Environ Microbiol 57:29–37

    PubMed  CAS  Google Scholar 

  • Toro N (1996) Nodulation competitiveness in the Rhizobium legume symbiosis. World J Microbiol Biotech 12:157–162

    Article  Google Scholar 

  • Trinick MJ (1980) Relationships amongst the fast growing rhizobia of Lablab purpureus, Leucaena leucocephala, Mimosa spp., Acacia farnesiana and Sesbania grandiflora and their affinities with other rhizobial groups. J Appl Microbiol 49:39–53

    Article  Google Scholar 

  • Trinick MJ (1982) Biology. Rhizobium. In: Broughton WJ (ed) Nitrogen Fixation, vol 2. Oxford University Press, Oxford, pp 76–146

    Google Scholar 

  • Triplett EW (1988) Isolation of genes involved in nodulation competitiveness from Rhizobium leguminosarum bv. trifolii T24. Proc Natl Acad Sci USA 85:3810–3814

    Article  PubMed  CAS  Google Scholar 

  • Triplett EW, Sadowsky MJ (1992) Genetics of competition for nodulation of legumes. Ann Rev Microbiol 46:399–428

    Article  CAS  Google Scholar 

  • Valdivia B, Dughri MH, Bottomley PJ (1988) Antigenic and symbiotic characterization of resident Rhizobium leguminosarum bv. trifolii recovered from root nodules of Trifolium pratense L. sown into sub clover pasture soils. Soil Biol Biochem 20:267–274

    Article  Google Scholar 

  • Vargas AAT, Graham PH (1988) Phaseolus vulgaris cultivar and Rhizobium strain variation in acid-pH tolerance and nodulation under acid conditions. Field Crops Res 19:91–101

    Article  Google Scholar 

  • Vincent JM (1954) The root-nodule bacteria as factors in clover establishment in the red basaltic soils of the Lismore District, New South Wales. I. A survey of ‘native’ strains. Aust J Agric Res 5:55–60

    Article  CAS  Google Scholar 

  • Vincent JM, Waters LM (1953) The influence of the host on competition amongst clover root-nodule bacteria. J Gen Microbiol 9:357–370

    PubMed  CAS  Google Scholar 

  • Weaver RW, Frederick LR (1974) Effect of inoculum rate on competitive nodulation of Glycine max (L.) Merrill. II. Field studies. Agron J 66:233–236

    Article  Google Scholar 

  • Weber RW, Miller VL (1972) Effect of soil temperature on Rhizobium japonicum serogroup distribution in soy-bean nodules. Agron J 64:796–798

    Article  Google Scholar 

  • Yates RJ, Howieson JG, Real D, Reeve WG, Vivas-Marfisi A, O’Hara GW (2005) Evidence of selection for effective nodulation in the Trifolium spp. symbiosis with Rhizobium leguminosarum biovar trifolii. Aust J Exp Agric 45:189–198

    Article  Google Scholar 

  • Yates RJ, Howieson JG, Reeve WG, Nandasena KG, Law IJ, Braü L, Ardley JK, Nistelberger H, Real D, O’Hara GW (2007) Lotononis angolensis forms nitrogen fixing, lupinoid nodules with phylogenetically unique, fast–growing, pink-pigmented bacteria, which do not nodulate L. bainesii or L. listii. Soil Biol Biochem 39:1680–1688

    Article  CAS  Google Scholar 

  • Yates RJ, Howieson JG, Reeve WG, Braü L, Speijers J, Nandasena K, Real D, Sezmis E, O’Hara GW (2008) Host-strain mediated selection for an effective nitrogen-fixing symbiosis between Trifolium spp. and Rhizobium leguminosarum biovar trifolii. Soil Biol Biochem 40:822–833

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron John Yates.

Additional information

Responsible Editor: Euan K. James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yates, R.J., Howieson, J.G., Reeve, W.G. et al. A re-appraisal of the biology and terminology describing rhizobial strain success in nodule occupancy of legumes in agriculture. Plant Soil 348, 255–267 (2011). https://doi.org/10.1007/s11104-011-0971-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0971-z

Keywords

Navigation