Skip to main content
Log in

Transfer RNA-dependent asparagine biosynthesis in Gluconacetobacter diazotrophicus and its influence on biological nitrogen fixation

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Gluconacetobacter diazotrophicus is a nitrogen-fixing endophytic bacterium isolated from sugarcane, rice, elephant grass, sweet potato, coffee, and pineapple. These plants have high level of asparagine, which promotes microbial growth and inhibits nitrogenase activity. The regulation of intracellular concentrations of this amino acid is essential for growth and biological nitrogen fixation (BNF) in this diazotroph; however its asparagine metabolic pathway has not yet been clearly established.

Methods

The work reported here is the first to demonstrate the use of an alternative route for asparaginyl-tRNA (Asn-tRNA) and asparagine formation in an endophytic nitrogen-fixing bacterium by using in silico and in vitro analysis.

Results

The indirect route involves transamidation of incorrectly charged tRNA via GatCAB transamidase. Nitrogenase activity was completely inhibited by 20 mM Asn in LGI-P medium, which in contrast promotes protein synthesis and microbial growth.

Conclusions

The analysis carried out in this work shows that intracellular levels of asparagine regulate the expression of nitrogenase nifD gene (GDI0437), suggesting that the presence of an alternative route to produce asparagine might give the G. diazotrophicus a tighter control over cell growth and BNF, and may be of importance in the regulation of the endophytic plant-microbe interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alquéres SM, Oliveira JH, Nogueira EM, Guedes HV, Oliveira PL, Câmara F, Baldani JI, Martins OB (2010) Antioxidant pathways are up-regulated during biological nitrogen fixation to prevent ROS-induced nitrogenase inhibition in Gluconacetobacter diazotrophicus. Arch Microbiol 192:835–841

    Article  PubMed  Google Scholar 

  • Becker HD, Kern D (1998) Thermus thermophilus: a link in evolution of the tRNA-dependent amino acid amidation pathways. Proc Natl Acad Sci USA 95:12832–12837

    Article  PubMed  CAS  Google Scholar 

  • Bernard D, Akochy P-M, Beaulieu D, Lapointe J, Roy PH (2006) Two residues in the anticodon recognition domain of the aspartyl-tRNA synthetase from Pseudomonas aeruginosa are individually implicated in the recognition of tRNAAsn. J Bacteriol 188:269–274

    Article  PubMed  CAS  Google Scholar 

  • Bertalan M, Albano R, de Padua V, Rouws L, Rojas C, Hemerly A, Teixeira K, Schwab S, Araujo J, Oliveira A, França L, Magalhães V, Alquéres S, Cardoso A et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450

    Article  PubMed  Google Scholar 

  • Cardoso AM, Polycarpo C, Martins OB, Söll D (2006) A non-discriminating aspartyl-tRNA synthetase from Halobacterium salinarum. RNA Biol 3:110–114

    Article  PubMed  CAS  Google Scholar 

  • Cavalcante VA, Döbereiner J (1988) A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108:23–31

    Article  Google Scholar 

  • Chuawong P, Hendrickson TL (2006) The nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori: anticodon-binding domain mutations that impact tRNA specificity and heterologous toxicity. Biochem 45:8079–8087

    Article  CAS  Google Scholar 

  • Curnow AW, Hong K-W, Yuan R, Kim S-I, Martins O, Winkler W, Henkin TM, Söll D (1997) Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc Natl Acad Sci USA 94:11819–11826

    Article  PubMed  CAS  Google Scholar 

  • Curnow AW, Tumbula DL, Pelaschier JT, Min B, Söll D (1998) Glutamyl-tRNAGln amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis. Proc Natl Acad Sci USA 95:12838–12843

    Article  PubMed  CAS  Google Scholar 

  • Gagnon Y, Lacoste L, Champagne N, Lapointe J (1996) Widespread use of the Glu-tRNAGln transamidation pathway among bacteria. J Biol Chem 271:14856–14863

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto A, Nishikawa T, Oka T, Takahashi K, Hayashi T (1992) Determination of free amino acid enantiomers in rat brain and serum by high-performance liquid chromatography after derivatization with N-tert.-butyloxycarbonyl-L-cysteine and o-phthaldialdehyde. J Chromatogr 582:41–48

    Article  PubMed  CAS  Google Scholar 

  • Ibba M, Söll D (2000) Aminoacyl-tRNA synthesis. Annu Rev Biochem 69:617–650

    Article  PubMed  CAS  Google Scholar 

  • James EK, Reis VM, Olivares FL, Baldani JI, Döbereiner J (1994) Infection of sugarcane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45:757–766

    Article  CAS  Google Scholar 

  • James EK, Olivares FL, de Oliveira AL, dos Reis FB Jr, da Silva LG, Reis VM (2001) Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52:747–760

    PubMed  CAS  Google Scholar 

  • Jimenez-Salgado T, Fuentes-Ramirez LE, Tapia-Hernandez A, Mascarua-Esparza MA, Martinez-Romero E, Caballero-Mellado J (1997) Coffea arabica L., a new host plant for Gluconacetobacter diazotrophicus and isolation of other nitrogen fixing Gluconacetobacteria. Appl Environ Microbiol 63:3676–3683

    PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Loiret FG, Grimm B, Hajirezaei MR, Kleiner D, Ortega E (2009) Inoculation of sugarcane with Pantoea sp. increases amino acid contents in shoot tissues; serine, alanine, glutamine and asparagine permit concomitantly ammonium excretion and nitrogenase activity of the bacterium. J Plant Physiol 166:1152–1161

    Article  PubMed  CAS  Google Scholar 

  • Min B, Pelaschier JT, Graham DE, Hansen DT, Söll D (2002) Transfer RNA-dependent amino acid biosynthesis: an essential route to asparagine formation. Proc Natl Acad Sci USA 99:2678–2683

    Article  PubMed  CAS  Google Scholar 

  • Muthukumarasamy R, Cleenwerck I, Revathi G, Vadivelu M, Janssens D, Hoste B, Gum KU, Park KD, Son CY, Sa T, Caballero-Mellado J (2005) Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 28:277–286

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Yamada M, Hirota Y, Sugimoto K, Oka A, Takanami M (1981) Nucleotide sequence of the asnA gene coding for asparagine synthetase of E. coli K-12. Nucleic Acids Res 9:4669–4676

    Article  PubMed  CAS  Google Scholar 

  • Reis VM, Dobereiner J (1998) Effect of high sugar concentration on nitrogenase activity of Acetobacter diazotrophicus. Arch Microbiol 171:13–18

    Article  PubMed  CAS  Google Scholar 

  • Scofield MA, Lewis WS, Schuster SM (1990) Nucleotide sequence of Escherichia coli asnB and deduced amino acid sequence of asparagine synthetase B. J Biol Chem 265:12895–12902

    PubMed  CAS  Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif-mutants strains. Mol Plant Microbe Interact 14:358–366

    Article  PubMed  CAS  Google Scholar 

  • Sheppard K, Akochy PM, Salazar JC, Söll D (2007) The Helicobacter pylori amidotransferase GatCAB is equally efficient in glutamine-dependent transamidation of Asp-tRNAAsn and Glu-tRNAGln. J Biol Chem 282:11866–11873

    Article  PubMed  CAS  Google Scholar 

  • Tapia-Hernandez A, Bustillos-Cristales MR, Jimenez-Salgado T, Caballero-Mellado J, Fuentes-Ramirez LE (2000) Natural endophytic occurrence of Gluconacetobacter diazotrophicus in pineapple plants. Microb Ecol 39:49–55

    Article  PubMed  Google Scholar 

  • Tejera NA, Ortega E, Rodés R, Lluch C (2004) Influence of carbon and nitrogen sources on growth, nitrogenase activity and carbon metabolism of Gluconacetobacter diazotrophicus. Can J Microbiol 50:745–750

    Article  PubMed  CAS  Google Scholar 

  • Wealand JL, Myers JA, Hirschberg R (1989) Changes in gene expression during nitrogen starvation in Anabaena variabilis ATCC 29413. J Bacteriol 171:1309–1313

    PubMed  CAS  Google Scholar 

  • Zalkin H, Truitt CD (1977) Characterization of the glutamine site of Escherichia coli guanosine 5′-monophosphate synthetase. J Biol Chem 252:5431–5436

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Genome Sequencing facilities core Johanna Döbereiner and Embrapa Agrobiologia staff for their help and support in laboratory analyses and the team of Dieter Söll Lab (Yale University) for support and discussion. The research was partly supported by Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Cardoso.

Additional information

Responsible Editor: Euan K. James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alquéres, S.M., Cardoso, A.M., Brito-Moreira, J. et al. Transfer RNA-dependent asparagine biosynthesis in Gluconacetobacter diazotrophicus and its influence on biological nitrogen fixation. Plant Soil 356, 209–216 (2012). https://doi.org/10.1007/s11104-011-0952-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0952-2

Keywords

Navigation