Skip to main content

Advertisement

Log in

What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants?

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal (AM) symbioses are widespread in land plants but the extent to which they are functionally important in agriculture remains unclear, despite much previous research. We ask focused questions designed to give new perspectives on AM function, some based on recent research that is overturning past beliefs. We address factors that determine growth responses (from positive to negative) in AM plants, the extent to which AM plants that lack positive responses benefit in terms of nutrient (particularly phosphate: P) uptake, whether or not AM and nonmycorrhizal (NM) plants acquire different forms of soil P, and the cause(s) of AM ‘growth depressions’. We consider the relevance of laboratory work to the agricultural context, including effects of high (available) soil P on AM fungal colonisation and whether AM colonisation may be deleterious to crop production due to fungal ‘parasitism’. We emphasise the imperative for research that is aimed at increasing benefits of AM symbioses in the field at a time of increasing prices of P-fertiliser, and increasing demands on agriculture to feed the world. In other words, AM symbioses have key roles in providing ecosystem services that are receiving increasing attention worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AM:

arbuscular mycorrhizal

NM:

non-mycorrhizal

MGR:

mycorrhizal growth response

MGD:

mycorrhizal growth dependency

References

  • Abbott LK, Robson AD (1977) Growth stimulation of subterranean clover with vesicular arbuscular mycorrhizas. Aust J Agric Res 28:639–649

    Article  CAS  Google Scholar 

  • Abbott LK, Robson AD (1978) Growth of subterranean clover in relation to the formation of endomycorrhizas by introduced and indigenous fungi in a field soil. New Phytol 81:575–585

    Article  Google Scholar 

  • Abbott LK, Robson AD (1982) The role of vesicular arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation. Aust J Agric Res 33:389–408

    Article  Google Scholar 

  • Abbott LK, Robson AD (1985) The effect of soil pH on the formation of VA mycorrhizas by two species of Glomus. Aust J Soil Res 23:253–261

    Article  Google Scholar 

  • Abbott LK, Robson AD (1991) Field management of VA mycorrhizal fungi. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht, pp 355–362

    Chapter  Google Scholar 

  • Abbott LK, Robson AD, Scheltema MA (1995) Managing soils to enhance mycorrhizal benefits in Mediterranean agriculture. Crit Rev Biotech 15:213–228

    Article  Google Scholar 

  • Ames RN, Reid CPP, Porter L, Cambardella C (1983) Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol 95:381–396

    Article  Google Scholar 

  • Balzergue C, Peuch-Pagès V, Bécard G, Rochange SF (2011) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot 62:1049–1060

    Article  PubMed  CAS  Google Scholar 

  • Baon JB, Smith SE, Alston AM, Wheeler RD (1992) Phosphorus efficiency of three cereals as related to indigenous mycorrhizal infection. Aust J Agric Res 43:479–491

    Article  CAS  Google Scholar 

  • Baylis GTS (1970) Root hairs and phycomycetous mycorrhizas in phosphorus-deficient soil. Plant Soil 33:713–716

    Article  Google Scholar 

  • Bethlenfalvay GJ, Brown MS, Pacovsky RS (1982) Parasitic and mutualistic asssociations between a mycorrhizal fungus and soybean: development of the host plant. Phytopathology 72:889–893

    Article  CAS  Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    Article  CAS  Google Scholar 

  • Bolan NS, Robson A, Barrow NJ, Aylemore LAG (1984) Specific activity of phosphorus in mycorrhizal and non-mycorrhizal plants in relation to the availability of phosphorus to plants. Soil Biol Biochem 16:299–304

    Article  CAS  Google Scholar 

  • Bolan NS, Robson AD, Barrow NJ (1987a) Effects of phosphorus application and mycorrhizal inoculation on root characteristics of subterranean clover and ryegrass in relation to phosphorus uptake. Plant Soil 104:294–298

    Article  CAS  Google Scholar 

  • Bolan NS, Robson AD, Barrow NJ (1987b) Effects of vesicular-arbuscular mycorrhiza on the availability of iron phosphates to plants. Plant Soil 99:401–410

    Article  CAS  Google Scholar 

  • Bürkert B, Robson A (1994) 65Zn uptake in subterranean clover (Trifolium subterraneum L.) by three vesicular-arbuscular mycorrhizal fungi in a root-free sandy soil. Soil Biol Biochem 26:1117–1124

    Article  Google Scholar 

  • Cardoso I, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agr Ecosyst Environ 116:72–84

    Article  Google Scholar 

  • Cavagnaro TR, Smith FA, Hay G, Carne-Cavagnaro VL, Smith SE (2004) Inoculum type does not affect overall resistance of an arbuscular mycorrhiza-defective tomato mutant to colonisation but inoculation does change competitive interactions with wild-type tomato. New Phytol 161:485–494

    Article  Google Scholar 

  • Cavagnaro TR, Jackson LE, Six J, Ferris H, Goyal S, Asami D, Scow KM (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil 282:209–225

    Article  CAS  Google Scholar 

  • Christophersen HM, Smith FA, Smith SE (2009) Arbuscular mycorrhizal colonization reduces arsenate uptake in barley via downregulation of transporters in the direct epidermal phosphate uptake pathway. New Phytol 184:962–974

    Article  PubMed  CAS  Google Scholar 

  • Cordell D, Drangerta J-O, White S (2009) The story of phosphorus: global food security and food for thought. Global Environ Chang 19:292–305

    Article  Google Scholar 

  • Cornish PS (2009) Research directions: improving plant uptake of soil phosphorus, and reducing dependency on input of phosphorus fertiliser. Crop Past Sci 60:190–196

    Article  Google Scholar 

  • Facelli E, Smith SE, Facelli JM, Christophersen HM, Smith FA (2010) Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition. New Phytol 185:1050–1061

    Article  PubMed  Google Scholar 

  • Fitter AH (2006) What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. New Phytol 172:3–6

    Article  PubMed  CAS  Google Scholar 

  • Frey B, Schüepp H (1993) Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytol 124:221–230

    Article  Google Scholar 

  • Frossard E, Achat DL, Bernasconi SM, Bünemann EK, Fardeau J-C, Jansa J, Morel C, Rabeharisoa L, Randrimanantsoa L, Sinaj S, Tamburini F, Oberson A (2011) The use of tracers to invesigate phosphate cycling in soil-plant systems. In: Bünemann EK, Obserson A, Frossard E (eds) Phosphorus in action: Biological processes in soil phosphorus cycling. Springer, Heidelberg, pp 59–91

    Google Scholar 

  • Gahoonia TS, Nielsen NE (2004) Root traits as tools for creating phosphorus efficient crop varieties. Plant Soil 260:47–57

    Article  Google Scholar 

  • Gavito M, Bruhn D, Jakobsen I (2002) Phosphorus uptake by arbuscular mycorrhizal hyphae does not increase when the host plant grows under atmospheric CO2 enrichment. New Phytol 154:751–760

    Article  CAS  Google Scholar 

  • George E, Marschner H, Jakobsen I (1995) Role of arbuscular mycorrizal fungi in uptake of phosphorus and nitrogen from soil. Crit Rev Biotech 15:257–270

    Article  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Grace EJ, Cotsaftis O, Tester M, Smith FA, Smith SE (2009) Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. New Phytol 181:938–949

    Article  PubMed  CAS  Google Scholar 

  • Harley JL (1959) The biology of mycorrhiza. Leonard Hill, London

    Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1992) Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can J Bot 70:2032–2040

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1993) Mycorrhizal dependance of modern wheat cultivars and ancestors: a synthesis. Can J Bot 71:512–518

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT, Todd TC (1996) Mycorrhizal response in wheat cultivars: relationship to phosphorus. Can J Bot 74:19–25

    Article  CAS  Google Scholar 

  • IJdo M, Cranenbrouck S, Declerck S (2011) Methods for large scale production of AM fungi: past, present and future. Mycorrhiza 21:1–16

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen I (1986) Vesicular-arbuscular mycorrhiza in field-grown crops. III. Mycorrhizal infection and rates of phosphorus inflow in pea plants. New Phytol 104:573–581

    Article  Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2003) Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23:481–488

    Article  CAS  Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Pfeffer P, Douds D, Piotrowski E, Lammers P, Shachar Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696

    Article  PubMed  CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1992) Hyphal transport of 15N-labelled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N. New Phytol 122:281–288

    Article  CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1994) Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant Soil 160:1–9

    Article  CAS  Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl 3:749–747

    Article  Google Scholar 

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas accross scales. New Phytol 185:631–647

    Article  PubMed  CAS  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–586

    Article  Google Scholar 

  • Joner EJ, Jakobsen I (1994) Contribution by two arbuscular mycorrhizal fungi to P uptake by cucumber (Cucumis sativus L.) from 32P-labelled organic matter during mineralization in soil. Plant Soil 163:203–209

    Article  CAS  Google Scholar 

  • Joner EJ, Jakobsen I (1995) Uptake of P-32 from labelled organic matter by mycorrhizal and non-mycorrhizal subterranean clover (Trifolium subterraneum L). Plant Soil 172:221–227

    Article  CAS  Google Scholar 

  • Joner EJ, Magid J, Gahoonia TS, Jakobsen I (1995) P depletion and activity of phosphatases in the rhizosphere of mycorrhizal and non-mycorrhizal cucumber (Cucumis sativus L.). Soil Biol Biochem 27:1145–1151

    Article  CAS  Google Scholar 

  • Joner EJ, Ravnskov S, Jakobsen I (2000) Arbuscular mycorrhizal phosphate transport under monoxenic conditions using radio-labelled inorganic and organic phosphate. Biotechnol Lett 22:1705–1708

    Article  CAS  Google Scholar 

  • Kiers ET, West SA, Denison RF (2002) Mediating mutualisms: farm management practices and evolutionary changes in symbiont co-operation. J Appl Ecol 39:745–754

    Article  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Kothari SK, Marschner H, George E (1990) Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytol 116:303–311

    Article  Google Scholar 

  • Lekberg Y, Koide R (2005) Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytol 168:189–204

    Article  PubMed  CAS  Google Scholar 

  • Li HY, Zhu YG, Marschner P, Smith FA, Smith SE (2005) Wheat responses to arbuscular mycorrhizal fungi in a highly calcareous soil differ from those of clover, and change with plant development and P supply. Plant Soil 277:221–232

    Article  CAS  Google Scholar 

  • Li HY, Smith SE, Holloway RE, Zhu YG, Smith FA (2006) Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol 172:536–543

    Article  PubMed  CAS  Google Scholar 

  • Li HY, Smith FA, Dickson S, Holloway RE, Smith SE (2008) Plant growth depressions in arbuscular mycorrhizal symbiosis: not just caused by carbon drain? New Phytol 178:852–862

    Article  PubMed  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Mäder P, Kaiser F, Adholeya A, Singh R, Uppal HS, Sharma SR, Sahai V, Aragno M, Wiemken A, Johri BN, Fried PM (2010) Inoculation of root microorganisms for sustainable wheat-rice and wheat-black gram rotations in India. Soil Biol Biochem 43:609–619

    Article  Google Scholar 

  • Maillet F, Poinsot O, Pouch-Pagès AV, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London, p 889

    Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Miller M, McGonigle T, Addy H (1994) An economic approach to evaluate the role of mycorrhizas in managed ecosystems. Plant Soil 159:27–35

    Google Scholar 

  • Mosse B (1973) Plant growth responses to vesicular-arbuscular mycorrhiza. IV. In soil given additional phosphate. New Phytol 72:127–136

    Article  Google Scholar 

  • Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M (2009) Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol 181:950–959

    Article  Google Scholar 

  • Oliver AJ, Smith SE, Nicholas DJD, Wallace W, Smith FA (1983) Activity of nitrate reductase in Trifolium subterraneum: effects of mycorrhizal infection and phosphate nutrition. New Phytol 94:63–79

    Article  CAS  Google Scholar 

  • Orfanoudakis M, Wheeler CT, Hooker JE (2010) Both the arbuscular mycorrhizal fungus Gigaspora rosea and Frankia increase root system branching and reduce root hair frequency in Alnus glutinosa. Mycorrhiza 20:117–126

    Article  PubMed  Google Scholar 

  • Owen KJ, Clewett TG, Thompson JP (2010) Pre-cropping with canola decreased Pratylenchus thornei populations, arbuscular mycorrhizal fungi, and yield of wheat. Crop Past Sci 61:399–410

    Article  Google Scholar 

  • Pate JS, Stewart GR, Unkovich M (1993) 15N natural abundance of plant and soil components of a Banksia woodland ecosystem in relation to nitrate utilization, life form, mycorrhizal status and N2-fixing abilities of component species. Plant Cell Environ 16:365–373

    Article  CAS  Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983) Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. II. Soil fumigation induced stunting of plants corrected by reinoculation of the wild endomycorrhiza flora. Plant Soil 70:211–217

    Article  CAS  Google Scholar 

  • Plenchette C, Clermont-Dauphin C, Meynard JM, Fortin JA (2005) Managing arbuscular mycorrhizal fungi in cropping systems. Can J Plant Sci 85:31–40

    Article  Google Scholar 

  • Read DJ (2002) Towards ecological relevance-progress and pitfalls in the path towards and understanding of mycorrhizal functions in nature. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer-Verlag, Berlin, pp 3–29

    Google Scholar 

  • Rhodes LH, Gerdemann JW (1980) Nutrient translocation in vesicular-arbuscular mycorrhizae. In: Cook CB, Pappas PW, Rudolph ED (eds) Cellular interactions in symbiosis and parasitism. Ohio State University Press, Columbus, pp 173–195

    Google Scholar 

  • Richardson AE (2009) Regulating the phosphorus nutrition of plants: molecular biology meeting agronomic needs. Plant Soil 322:17–24

    Article  CAS  Google Scholar 

  • Rillig MC, Ramsey PW, Gannon JE, Mummey DL, Gadkar V, Kapulnik Y (2008) Suitability of mycorrhiza-defective mutant/wildtype plant pairs (Solanum lycopersicum L. cv Micro-Tom) to address questions in mycorrhizal soil ecology. Plant Soil 308:267–275

    Article  CAS  Google Scholar 

  • Robson AD, Abbott LK, Malajczuk N (eds) (1994) Management of mycorrhizas in agriculture, horticulture and forestry. Kluwer, Dordrecht, p 238

  • Ryan MH, Graham JH (2002) Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244:263–271

    Article  CAS  Google Scholar 

  • Ryan MH, Angus JF (2003) Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P-uptake or yield. Plant Soil 250:225–239

    Article  CAS  Google Scholar 

  • Ryan MH, McCully ME, Huang CX (2003) Location and quantification of phosphorus and other elements in fully hydrated, soil-grown arbuscular mycorrhizas: a cryo-analytical scanning electron microscopy study. New Phytol 160:429–441

    Article  CAS  Google Scholar 

  • Ryan MH, van Herwaarden AF, Angus JF, Kirkegaard JA (2005) Reduced growth of autumn-sown wheat in a low-P soil is associated with high colonisation by arbuscular mycorrhizal fungi. Plant Soil 270:275–286

    Article  CAS  Google Scholar 

  • Ryan MH, McCully ME, Huang CX (2007) Relative amounts of soluble and insoluble forms of phosphorus and other elements in intraradical hyphae and arbuscules of arbuscular mycorrhizas. Funct Plant Biol 34:457–464

    Article  CAS  Google Scholar 

  • Sanders FE (1975) The effect of foliar-applied phosphate on the mycorrhizal infections of onion roots. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic, London, pp 261–276

    Google Scholar 

  • Schweiger PF, Jakobsen I (1999) Direct measurement of arbuscular mycorrhizal phosphorus uptake into field-grown winter wheat. Agron J 91:998–1002

    Article  Google Scholar 

  • Schweiger P, Robson A, Barrow N (1995) Root hair length determines beneficial effect of a Glomus species on shoot growth of some pasture species. New Phytol 131:247–254

    Article  Google Scholar 

  • Schweiger PF, Spliid NH, Jakobsen I (2001) Fungicide application and phosphorus uptake by hyphae of arbuscular mycorrhizal fungi into field-grown peas. Soil Biol Biochem 33:1231–1237

    Article  CAS  Google Scholar 

  • Smith SSE (1980) Mycorrhizas of autotrophic higher plants. Biol Rev 55:475–510

    Article  CAS  Google Scholar 

  • Smith SE (1982) Inflow of phosphate into mycorrhizal and non-mycorrhizal plants of Trifolium subterraneum at different levels of soil phosphate. New Phytol 90:293–303

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, New York, p 787

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosytems scales. Annu Rev Plant Biol 62:227–250

    Google Scholar 

  • Smith SE, Nicholas DJD, Smith FA (1979) Effect of early mycorrhizal infection on nodulation and nitrogen fixation in Trifolium subterraneum L. Aust J Plant Physiol 6:305–316

    Article  CAS  Google Scholar 

  • Smith SE, Robson AD, Abbott LK (1992) The involvement of mycorrhizas in assessment of genetically dependent efficiency of nutrient uptake and use. Plant Soil 146:169–179

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    Article  CAS  Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus (P) nutrition: interactions between pathways of P uptake in arbuscular mycorrhizal (AM) roots have important implications for understanding and manipulating plant P acquisition. Plant Physiol doi:10.1104/pp.111.174581

  • Tarafdar JC, Marschner H (1994a) Efficiency of VAM hyphae in utilisation of organic phosphorus by wheat plants. Soil Sci Plant Nutr 40:593–600

    CAS  Google Scholar 

  • Tarafdar JC, Marschner H (1994b) Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol Biochem 26:387–395

    Article  CAS  Google Scholar 

  • Tawaraya K (2003) Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Sci Plant Nutr 49:655–668

    Google Scholar 

  • Tawaraya K, Naito M, Wagastuma T (2006) Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi. J Plant Nutr 29:657–665

    Article  CAS  Google Scholar 

  • Thingstrup I, Rubaek G, Sibbesen E, Jakobsen I (1998) Flax (Linum usitatissimum L.) depends on arbuscular mycorrhizal fungi for growth and P uptake at intermediate but not high soil P levels in the field. Plant Soil 203:37–46

    Article  CAS  Google Scholar 

  • Thompson JP (1987) Decline of vesicular-arbuscular mycorrhizae in Long Fallow Disorder of field crops and its expression in phosphorus deficiency of sunflower. Aust J Agric Res 38:847–867

    Article  CAS  Google Scholar 

  • Thomson BD, Robson AD, Abbott LK (1986) Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasciculatum in relation to root carbohydrates. New Phytol 103:751–765

    Article  Google Scholar 

  • Wilson GWT, Hartnett DC (1998) Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am J Bot 85:1732–1738

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

In this review we have covered a lot of ground, and we acknowledge that there is much important research that for reasons of space we cannot cite. We owe many apologies but hope that publications that we have cited show reasonable balance. It is a pleasure to acknowledge the outstanding contributions made by our friend Iver Jakobsen, who has collaborated with Lynette Abbott and Alan Robson, and from whom we have subsequently learned a lot. We also thank Brent Kaiser for helpful comments on this manuscript. Our own research was supported by the Australian Research Council, the South Australia Grain Industry Trust, and the Waite Research Institute. Last and by no means least, we thank members of the mycorrhiza group at the University of Adelaide for their many contributions to the research and ideas presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Andrew Smith.

Additional information

Responsible Editor: Lynette Abbott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, F.A., Smith, S.E. What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants?. Plant Soil 348, 63–79 (2011). https://doi.org/10.1007/s11104-011-0865-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0865-0

Keywords

Navigation