Skip to main content
Log in

Regulating the phosphorus nutrition of plants: molecular biology meeting agronomic needs

  • Commentary
  • Published:
Plant and Soil Aims and scope Submit manuscript

The Original Article was published on 28 April 2009

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Abel S, Ticconi CA, Delatorre CA (2002) Phosphate sensing in higher plants. Physiol Plant 115:1–8

    Article  PubMed  CAS  Google Scholar 

  • Bari R, Pant BD, Stitt M, Scheible WR (2006) PHO2, microRNA399, and PHR1 define a phosphate signaling pathway in plants. Plant Physiol 141:988–999

    Article  PubMed  CAS  Google Scholar 

  • Beebe SE, Rojas-Pierce M, Yan X, Blair MW, Pedraza F, Muñoz F, Tohme J, Lynch JP (2006) Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci 46:413–423

    Article  CAS  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Xu L, Cai Y, Xu J (2008) QTL mapping of phosphorus efficiency and relative biologic characteristics in maize (Zea mays L.) at two sites. Plant Soil 313:251–266

    Article  CAS  Google Scholar 

  • Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–421

    Article  PubMed  CAS  Google Scholar 

  • Cordell D, Drangert JO, White S (2009a) The story of phosphorus: Global food security and food for thought. Global Environ Change 19:292–305

    Article  Google Scholar 

  • Cordell D, Schmid-Neset T, White S, Drangert JO (2009b) Preferred future phosphorus scenarios: A framework for meeting long-term phosphorus needs for global food demand. In: Mavinic D, Ashley K, Koch F (eds) International conference on nutrient recovery from wastewater streams. IWA Publishing, London, UK, pp 23–43

    Google Scholar 

  • Delhaize E, Randall PJ (1995) Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana. Plant Physiol 107:207–213

    PubMed  CAS  Google Scholar 

  • Delhaize E, Hebb DM, Ryan PR (2001) Expression of a Pseudomonas aeruginosa citrate synthase gene is not associated with either enhanced citrate accumulation or efflux. Plant Physiol 125:2059–2067

    Article  PubMed  CAS  Google Scholar 

  • Delhaize E, Taylor P, Hocking PJ, Simpson RJ, Ryan PR, Richardson AE (2009) Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil. Plant Biotech J 7:391–400

    Article  CAS  Google Scholar 

  • Dinkelaker B, Hengeler C, Marschner H (1995) Distribution and function of proteoid and other root clusters. Bot Acta 108:183–200

    Google Scholar 

  • Dinkelaker B, Römheld V, Marschner H (1989) Citric acid exudation and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ 12:265–292

    Article  Google Scholar 

  • Doerner P (2008) Phosphate starvation signalling: a threesome controls systemic Pi homeostasis. Curr Opin Plant Biol 11:536–540

    Article  PubMed  CAS  Google Scholar 

  • Franco-Zorrilla JM, González E, Bustos R, Linhares F, Leyva A, Paz-Ares J (2004) The transcriptional control of plant responses to phosphate limitation. J Exp Bot 55:285–293

    Article  PubMed  CAS  Google Scholar 

  • Gardner WK, Parbury DG, Barber DA (1981) Proteoid root morphology and function in Lupinus albus. Plant Soil 60:143–147

    Article  CAS  Google Scholar 

  • George TS, Richardson AE (2008) Potential and limitations to improving crops for enhanced phosphorus utilisation. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions, pp 247-270. Plant EcoPhysiology Series vol 7, Springer, Dordrecht, Netherlands

  • George TS, Simpson RJ, Hadobas PA, Richardson AE (2005a) Expression of a fungal phytase gene in Nicotiana tabacum improves phosphorus nutrition in plants grown in amended soil. Plant Biotech J 3:129–140

    Article  CAS  Google Scholar 

  • George TS, Richardson AE, Smith JB, Hadobas PA, Simpson J (2005b) Limitations to the potential of transgenic Trifolium subterraneum L. plants that exude phytase, when grown in soils with a range of organic phosphorus content. Plant Soil 278:263–274

    Article  CAS  Google Scholar 

  • Gilbert GA, Knight JD, Vance CP, Allan DL (1999) Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant Cell Environ 22:801–810

    Article  CAS  Google Scholar 

  • Hammond JP, White PJ (2007) Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot 59:93–109

    Article  Google Scholar 

  • Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC, May ST, Rahn C, Swarup R, Woolaway KE, White PJ (2003) Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol 132:578–596

    Article  PubMed  CAS  Google Scholar 

  • Hammond JP, Broadley MR, White PJ (2004) Genetic responses to phosphorus deficiency. Ann Bot 94:323–332

    Article  PubMed  CAS  Google Scholar 

  • Isherwood KF (2000) Mineral fertilizer use and the environment. International Fertilizer Industry Association, United Nations Environment Programme, Paris

    Google Scholar 

  • Jain A, Vasconcelos MJ, Raghothama KG, Sahi SV (2007) Molecular mechanisms of plant adaptation to phosphate deficiency. Plant Breed Rev 29:359–419

    Article  CAS  Google Scholar 

  • Jakobsen I, Leggett ME, Richardson AE (2005) Rhizosphere microorganisms and plant phosphorus uptake. In: Sims JT, Sharpley AN (eds) Phosphorus, agriculture and the environment. American Society for Agronomy, Madison, USA, pp 437–494

    Google Scholar 

  • Keerthisinghe G, Hocking PJ, Ryan PR, Delhaize E (1998) Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus L.). Plant Cell Environ 21:467–478

    Article  CAS  Google Scholar 

  • Koyama H, Kanamura A, Kihara T, Hara T, Takita E, Shibata D (2000) Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus limited soil. Plant Cell Physiol 41:1030–1037

    Article  PubMed  CAS  Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    Article  PubMed  Google Scholar 

  • Lia HG, Shen JB, Zhang FS, Tang CX, Lambers H (2008) Is there a critical level of shoot phosphorus concentration for cluster-root formation in Lupinus albus? Func Plant Biol 35:328–336

    Article  Google Scholar 

  • Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, Wu PC, Chiou TJ (2008) Regulatory network of microRNA399 and PHO2 by systemic signalling. Plant Physiol 147:732–746

    Article  PubMed  CAS  Google Scholar 

  • Lin WY, Lin SI, Chiou TJ (2009) Molecular regulations of phosphate homeostasis in plants. J Exp Bot 60:1427–1438

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Samac DA, Bucciarelli B, Allan DL, Vance CP (2005) Signaling of phosphorus deficiency-induced expression in white lupin requires sugar and phloem transport. Plant J 41:257–268

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Bucio J, de la Vega OM, Guevara-García A, Herrera-Estrella L (2000) Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat Biotechnol 18:450–453

    Article  PubMed  CAS  Google Scholar 

  • Miller SS, Liu J, Allan DL, Menzhuber CJ, Fedorova M, Vance CP (2001) Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiol 127:594–606

    Article  PubMed  CAS  Google Scholar 

  • Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud MC (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA 102:11934–11939

    Article  PubMed  CAS  Google Scholar 

  • Mitsukawa N, Okumura S, Shirano Y, Sato S, Kato T, Harashima S, Shibata D (1997) Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc Natl Acad Sci USA 94:7098–7102

    Article  PubMed  CAS  Google Scholar 

  • Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Bläsing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, Scheible WR (2007) Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30:85–112

    Article  PubMed  CAS  Google Scholar 

  • Müller R, Morant M, Jarmer H, Nilsson L, Nilelsen TH (2007) Genome-wide analysis of Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiol 143:156–171

    Article  PubMed  Google Scholar 

  • Neumann G, Martinoia E (202) Cluster roots - an underground adaptation for survival in extreme environments. Trends Plant Sci 7:162–167

    Article  Google Scholar 

  • Nilsson L, Muller R, Nielsen TH (2007) Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Environ 30:1499–1512

    Article  PubMed  CAS  Google Scholar 

  • Ozawa K, Osaki M, Matsui H, Honma M, Tadano T (1995) Purification and properties of acid phosphatase secreted from lupin roots under phosphorus-deficiency conditions. Soil Sci Plant Nutr 41:461–469

    CAS  Google Scholar 

  • Pant BD, Buhtz A, Kehr J, Scheible WR (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738

    Article  PubMed  CAS  Google Scholar 

  • Rae AL, Jarmey JM, Mudge SR, Smith FW (2004) Over-expression of a high-affinity phosphate transporter in transgenic barley plants does not enhance phosphate uptake rates. Funct Plant Biol 31:141–148

    Article  CAS  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Ann Rev Plant Physiol Plant Mol Biol 50:665–693

    Article  CAS  Google Scholar 

  • Raghothama KG (2000) Phosphate transport and signaling. Curr Opin Plant Biol 3:182–187

    PubMed  CAS  Google Scholar 

  • Reymond M, Svistoonoff S, Loudet O, Nussaume L, Desnos T (2006) Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell Environ 29:115–125

    Article  PubMed  CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649

    Article  PubMed  CAS  Google Scholar 

  • Richardson AE, George TS, Hens M, Simpson RJ (2005) Utilization of soil organic phosphorus by higher plants. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI, Wallingford, UK, pp 165–184

    Google Scholar 

  • Richardson AE, Hocking PJ, Simpson RJ, George TS (2009a) Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Sci 60:124–143

    Article  CAS  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009b) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil (in press / doi:10.1007/s11104-009-9895-2)

  • Rubio V, Bustos R, Irigoyen KL, Cardona-Lopez X, Rojas-Triana M, Paz-Ares J (2009) Plant hormones and nutrient signaling. Plant Mol Biol 69:361–373

    Article  PubMed  CAS  Google Scholar 

  • Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Develop 15:2122–2133

    Article  PubMed  CAS  Google Scholar 

  • Runge-Metzger A (1995) Closing the cycle: obstacles to efficient P management for improved global security. In: Tiessen H (ed) Phosphorus in the global environment. Wiley, Chichester, UK, pp 27–42

    Google Scholar 

  • Schünmann PHD, Richardson AE, Vickers C, Delhaize E (2004) Promoter analysis of the barley (Hordeum vulgare L.) Pht1;1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. Plant Physiol 136:4205–4214

    Article  PubMed  Google Scholar 

  • Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:99–123

    Article  Google Scholar 

  • Shane MW, De Vos M, De Roock S, Lambers H (2003) Shoot P status regulates cluster-root growth and citrate exudation in Lupinus albus grown with a divided root system. Plant Cell Environ 26:265–273

    Article  CAS  Google Scholar 

  • Sharpley AN, Withers PJA, Abdalla CW, Dodd AR (2005) Strategies for the sustainable management of phosphorus. In: Sims JT, Sharpley AN (eds) Phosphorus, agriculture and the environment. American Society for Agronomy, Madison, USA, pp 1069–1101

    Google Scholar 

  • Shinano T, Nanamori M, Dohi M, Wasaki J, Osaki M (2005) Evaluation of phosphorus starvation inducible genes relating to efficient phosphorus utilization in rice. Plant Soil 269:81–87

    Article  CAS  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu JH, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  PubMed  CAS  Google Scholar 

  • Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminium. Plant Physiol 127:1836–1844

    Article  PubMed  CAS  Google Scholar 

  • Tesfaye M, Liu J, Allan DL, Vance CP (2007) Genomic and genetic control of phosphate stress in legumes. Plant Physiol 144:594–603

    Article  PubMed  CAS  Google Scholar 

  • Ticconi CA, Abel S (2004) Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci 9:548–555

    Article  PubMed  CAS  Google Scholar 

  • Uhde-Stone C, Zinn KE, Ramirez-Yáñez M, Li A, Vance CP, Allan DL (2003) Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency. Plant Physiol 131:1064–1079

    Article  PubMed  CAS  Google Scholar 

  • Valdés-López O, Hernández G (2008) Transcriptional regulation and signaling in phosphorus starvation: what about legumes? J Integrat Plant Biol 50:1213–1222

    Article  Google Scholar 

  • Valdés-López O, Arenas-Huertero C, Ramirez M, Girard L, Sanchez F, Vance CP, Reyes JL, Hernández G (2008) Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus-deficiency signalling in common bean roots. Plant Cell Environ 31:1834–1843

    Article  PubMed  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: Critical adaptations by plants for securing a non-renewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Wang C, Ying S, Huang HJ, Li K, Wu P, Shou HX (2009) Involvement of OsSPX1 in phosphate homeostasis in rice. Plant J 57:895–904

    Article  PubMed  CAS  Google Scholar 

  • Wasaki J, Omura M, Ando M, Dateki H, Shinano T, Osaki M, Ito H, Matsui H, Tadano T (2000) Molecular cloning and root specific expression of secretory acid phosphatase from phosphate deficient lupin (Lupinus albus L.). Soil Sci Plant Nutr 46:427–437

    CAS  Google Scholar 

  • Wasaki J, Yonetani R, Kuroda S, Shinano T, Yazaki J, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Kishimoto N, Kikuchi S, Yamagishi M, Osaki M (2003) Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ 26:1515–1523

    Article  CAS  Google Scholar 

  • Wissuwa M, Ae N (2001) Further characterization of two QTLs that increase phosphorus uptake of rice (Oryza sativa L.) under phosphorus deficiency. Plant Soil 237:275–286

    Article  CAS  Google Scholar 

  • Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil (in press / doi:10.1007/s11104-008-9693-2)

  • Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng XW (2003) Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol 132:1260–1271

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Kaeppler SM, Lynch JP (2005) Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency. Plant Soil 270:299–310

    Article  CAS  Google Scholar 

  • Zinn KE, Liu J, Allan DL, Vance CP (2009) White lupin (Lupinus albus) response to phosphorus stress: evidence for complex regulation of LaSAP1. Plant Soil (this issue / doi:10.1007/s11104-009-0002-5)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan E. Richardson.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, A.E. Regulating the phosphorus nutrition of plants: molecular biology meeting agronomic needs. Plant Soil 322, 17–24 (2009). https://doi.org/10.1007/s11104-009-0071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0071-5

Keywords

Navigation