Skip to main content
Log in

Effects of genetically modified amylopectin-accumulating potato plants on the abundance of beneficial and pathogenic microorganisms in the rhizosphere

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

In this study, the potential effects of a genetically modified (GM) amylopectin-accumulating potato line (Solanum tuberosum L.) on plant beneficial bacteria and fungi as well as on phytopathogens in the rhizosphere were investigated in a greenhouse experiment and a field trial. For comparison, the non-transgenic parental cultivar of the GM line and a second non-transgenic cultivar were included in the study. Rhizospheres were sampled during young leaf development (EC30) and at florescence (EC60). The microbial community composition was analysed by real-time PCR to quantify the abundances of Pseudomonas spp., Clavibacter michiganensis, Trichoderma spp. and Phytophthora infestans. Additionally, total bacterial and fungal abundances were measured. None of the examined gene abundance patterns were affected by the genetic modification when wild type and GM line were compared. However, significant differences were observed between the two natural potato cultivars, especially during the early leaf development of the plants. Furthermore, gene abundance patterns were also influenced by the plant developmental stage. Interestingly, the impact of the cultivar and the plant vegetation stage on the microbial community structure was more pronounced in field than in greenhouse. Overall, field-grown plants showed a higher abundance of microorganisms in the rhizosphere than plants grown under greenhouse conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol 184:529–544

    Article  CAS  PubMed  Google Scholar 

  • Bach HJ, Tomanova J, Schloter M, Munch JC (2002) Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification. J Microbiol Meth 49:235–245

    Article  CAS  Google Scholar 

  • Bach HJ, Jessen I, Schloter M, Munch JC (2003) A TaqMan-PCR protocol for quantification and differentiation of the phytopathogenic Clavibacter michiganensis subspecies. J Microbiol Meth 52:85–91

    Article  CAS  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Boehm J, Hahn A, Schubert R, Bahnweg G, Adler N, Nechwatal J, Oehlmann R, Oiwald W (1999) Real-time quantitative PCR: DNA determination in isolated spores of the mycorrhizal fungus Glomus mosseae and monitoring of Phytophthora infestans and Phytophthora citricola in their respective host plants. J Phytopathol 147:409–416

    Article  Google Scholar 

  • Cordier C, Alabouvette C (2009) Effects of the introduction of a biocontrol strain of Trichoderma atroviride on non target soil micro-organisms. Eur J Soil Biol 45:267–274

    Article  Google Scholar 

  • Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249

    Article  CAS  PubMed  Google Scholar 

  • De Boer SH, Slack SA (1984) Current status and prospects for detecting and controlling bacterial ring rot of potatoes in North America. Plant Dis 68:841–844

    Google Scholar 

  • De Meyer G, Bigirimana J, Elad Y, Höfte M (1998) Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur J Plant Pathol 104:279–286

    Article  Google Scholar 

  • De Schutter B, Aerts R, Rombouts L (2002) The influence of fungicides on the growth of Trichoderma asperellum. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 67:291–298

    PubMed  Google Scholar 

  • De Vetten N, Wolters A, Raemakers K, van der Meer I, ter Stege R, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442

    Article  PubMed  Google Scholar 

  • Dłużniewska J (2003) Reaction of fungi of Trichoderma genus to selected abiotic factors. In: Electronic Journal of Polish Agricultural Universities. Available via http://www.ejpau.media.pl/volume6/issue2/agronomy/art-04.html. Accessed 01 Sept 2003

  • Ghisalberti EL, Rowland CY (1993) Antifungal metabolites from Trichoderma harzianum. J Nat Prod 56:1799–1804

    Article  CAS  PubMed  Google Scholar 

  • Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  • Griffiths BS, Geoghegan IE, Robertson WM (2000a) Testing genetically engineered potato, producing the lectins GNA and Con A, on non-target soil organisms and processes. J Appl Ecol 37:159–170

    Article  Google Scholar 

  • Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000b) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491

    Article  CAS  PubMed  Google Scholar 

  • Gyamfi S, Pfeifer U, Stierschneider M, Sessitsch A (2002) Effects of transgenic glufosinate-tolerant oilseed rape (Brassica napus) and the associated herbicide application on eubacterial and Pseudomonas communities in the rhizosphere. FEMS Microbiol Ecol 41:181–190

    Article  CAS  PubMed  Google Scholar 

  • Hagn A, Pritsch K, Ludwig W, Schloter M (2003) Theoretical and practical approaches to evaluate suitable primer sets for the analysis of soil fungal communities. Acta Biotechnol 23:373–381

    Article  CAS  Google Scholar 

  • Hagn A, Wallisch S, Radl V, Charles Munch J, Schloter M (2007) A new cultivation independent approach to detect and monitor common Trichoderma species in soils. J Microbiol Meth 69:86–92

    Article  CAS  Google Scholar 

  • Haran S, Schickler H, Chet I (1996) Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiol 142:2321–2331

    Article  CAS  Google Scholar 

  • Heuer H, Kroppenstedt RM, Lottmann J, Berg G, Smalla K (2002) Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors. Appl Environ Microbiol 68:1325–1335

    Article  CAS  PubMed  Google Scholar 

  • Johnsen K, Enger O, Jacobsen CS, Thirup L, Torsvik V (1999) Quantitative selective PCR of 16S ribosomal DNA correlates well with selective agar plating in describing population dynamics of indigenous Pseudomonas spp. in soil hot spots. Appl Environ Microbiol 65:1786–1788

    CAS  PubMed  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Kowalchuk G, Buma D, de Boer W, Klinkhamer P, van Veen J (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Leeuwenhoek 81:509–520

    Article  PubMed  Google Scholar 

  • Kowalchuk GA, Bruinsma M, van Veen JA (2003) Assessing responses of soil microorganisms to GM plants. Trends Ecol Evol 18:403–410

    Article  Google Scholar 

  • Kraak A (1993) Industrial applications of potato starch products. Ind Crops Prod 1:107–112

    Article  Google Scholar 

  • Kuipers A, Jacobsen E, Visser R (1994) Formation and deposition of amylose in the potato tuber starch granule are affected by the reduction of granule-bound starch synthase gene expression. Plant Cell 6:43–52

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Zeng Q, Yan F, Xu H, Xu C (2005) Effects of transgenic plants on soil microorganisms. Plant Soil 271:1–13

    Article  CAS  Google Scholar 

  • Lottmann J, Heuer H, Smalla K, Berg G (1999) Influence of transgenic T4-lysozyme-producing potato plants on potentially beneficial plant-associated bacteria. FEMS Microbiol Ecol 29:365–377

    Article  CAS  Google Scholar 

  • Lottmann J, Heuer H, Vries J, Mahn A, During K, Wackernagel W, Smalla K, Berg G (2000) Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. FEMS Microbiol Ecol 33:41–49

    Article  PubMed  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Ann Rev Phytopathol 39:461–490

    Article  CAS  Google Scholar 

  • Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    Article  CAS  Google Scholar 

  • Marschner P, Solaiman Z, Rengel Z (2006) Rhizosphere properties of Poaceae genotypes under P-limiting conditions. Plant Soil 283:11–24

    Article  CAS  Google Scholar 

  • Milling A, Smalla K, Maidl F, Schloter M, Munch J (2004) Effects of transgenic potatoes with an altered starch composition on the diversity of soil and rhizosphere bacteria and fungi. Plant Soil 266:23–39

    Article  CAS  Google Scholar 

  • Raaijmakers J, Paulitz T, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Rasche F, Hodl V, Poll C, Kandeler E, Gerzabek MH, van Elsas JD, Sessitsch A (2006) Rhizosphere bacteria affected by transgenic potatoes with antibacterial activities compared with the effects of soil, wild-type potatoes, vegetation stage and pathogen exposure. FEMS Microbiol Ecol 56:219–235

    Article  CAS  PubMed  Google Scholar 

  • Saxena D, Stotzky G (2001) Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil. Soil Biol Biochem 33:1225–1230

    Article  CAS  Google Scholar 

  • Schmalenberger A, Tebbe CC (2002) Bacterial community composition in the rhizosphere of a transgenic, herbicide-resistant maize (Zea mays) and comparison to its non-transgenic cultivar Bosphore. FEMS Microbiol Ecol 40:29–37

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch A, Kan FY, Pfeifer U (2003) Diversity and community structure of culturable Bacillus spp. populations in the rhizospheres of transgenic potatoes expressing the lytic peptide cecropin B. Appl Soil Ecol 22:149–158

    Article  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    Article  CAS  PubMed  Google Scholar 

  • Söderberg KH, Olsson PA, Bååth E (2002) Structure and activity of the bacterial community in the rhizosphere of different plant species and the effect of arbuscular mycorrhizal colonisation. FEMS Microbiol Ecol 40:223–231

    PubMed  Google Scholar 

  • Soerensen J (1997) The rhizosphere as a habitat for soil microorganisms. Marcel Dekker, New York

    Google Scholar 

  • Tooley PW, Bunyard BA, Carras MM, Hatziloukas E (1997) Development of PCR primers from internal transcribed spacer region 2 for detection of Phytophthora species infecting potatoes. Appl Environ Microbiol 63:1467–1475

    CAS  PubMed  Google Scholar 

  • Visser RGF, Somhorst I, Kuipers GJ, Ruys NJ, Feenstra WJ, Jacobsen E (1991) Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Mol Gen Genet 225:289–296

    Article  CAS  PubMed  Google Scholar 

  • Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295

    Article  CAS  PubMed  Google Scholar 

  • Weinert N, Meincke R, Gottwald C, Heuer H, Gomes NCM, Schloter M, Berg G, Smalla K (2009) Rhizosphere communities of genetically modified zeaxanthin-accumulating potato plants and their parent cultivar differ less than those of different potato cultivars. Appl Environ Microbiol 75:3859–3865

    Article  CAS  PubMed  Google Scholar 

  • White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Academic, New York

    Google Scholar 

  • Winding A, Binnerup SJ, Pritchard H (2004) Non-target effects of bacterial biological control agents suppressing root pathogenic fungi. FEMS Microbiol Ecol 47:129–141

    Article  CAS  PubMed  Google Scholar 

  • Yanai RD, Majdi H, Park BB (2003) Measured and modelled differences in nutrient concentrations between rhizosphere and bulk soil in a Norway spruce stand. Plant Soil 257:133–142

    Article  CAS  Google Scholar 

  • Young AH (1984) Fractionation of starch. Academic, New York

    Google Scholar 

Download references

Acknowledgements

This study was financed by grant 772e-U8793-2006/10-2 from the Bayerisches Staatsministerium für Umwelt, Gesundheit und Verbraucherschutz (StMUGV). The plant material was provided by the LfL collection. We thank Dr. Hans Hausladen for supplying the P. infestans isolate and Robert Brandhuber for performing the soil texture analysis. Dr. Kristina Schauß is gratefully acknowledged for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Gschwendtner.

Additional information

Responsible Editor: Tim Simon George.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gschwendtner, S., Reichmann, M., Müller, M. et al. Effects of genetically modified amylopectin-accumulating potato plants on the abundance of beneficial and pathogenic microorganisms in the rhizosphere. Plant Soil 335, 413–422 (2010). https://doi.org/10.1007/s11104-010-0430-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0430-2

Keywords

Navigation