Skip to main content

Advertisement

Log in

Soil-atmosphere exchange of greenhouse gases in subtropical plantations of indigenous tree species

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Indigenous broadleaf plantations are increasingly developing as a prospective silvicultural management approach for substituting in place of large pure conifer plantations in subtropical China. However, little information is known about the effects of tree species conversion on soil-atmosphere greenhouse gas (GHG) exchanges. Four adjacent monospecific plantations were selected in subtropical China to examine the effects of tree species on soil-atmosphere exchanges of N2O, CH4 and CO2. One coniferous plantation was composed of Pinus massoniana (PM), and the three broadleaf plantations were Castanopsis hystrix (CH), Michelia macclurei (MM) and Mytilaria laosensis (ML). We found that mean soil N2O and CO2 emissions in the PM plantation were 4.34 μg N m−2 h−1 and 43.25 mg C m−2 h−1, respectively, lower than those in the broadleaf plantations (>5.25 μg N m−2 h−1 and >56.38 mg C m−2 h−1). The PM plantation soil had higher mean CH4 uptake (39.03 μg C m−2 h−1) than the broadleaf plantation soils (<32.67 μg C m−2 h−1). Variations in soil N2O emissions among tree species could be primarily explained by the differences in litter C:N ratio and soil total N stock. Differences in soil CH4 uptake among tree species could be mostly attributed to the differences in mean soil CO2 flux and water filled pore space (WFPS). Litter C:N ratio could largely account for variations in soil CO2 emissions among tree species. This study confirms that there is no GHG benefit of converting PM plantation to broadleaf plantations in subtropical China. Therefore, the future strategy of tree species selection for substituting in place of large coniferous plantations in subtropical China needs to consider the potential effects of tree species on soil-atmosphere GHG exchanges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ambus P, Zechmeister-Boltenstern S, Butterbach-Bahl K (2006) Sources of nitrous oxide emitted from European forest soils. Biogeosciences 3:135–145

    Article  CAS  Google Scholar 

  • Ball BC, Dobbie KE, Parker JP, Smith KA (1997) The influence of gas transport and porosity on methane oxidation in soils. J Geophys Res-Atmos 102:23301–23308

    Article  CAS  Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter. Springer-Verlag, Berlin and Heidelberg, Germany

    Google Scholar 

  • Bodelier PLE, Låånbroek HJ (2004) Nitrogen as regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 47:265–277. doi:10.1016/S0168-6496(03)00304-0

    Article  CAS  PubMed  Google Scholar 

  • Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data. Ecol Monogr 75:139–157. doi:10.1890/04-0988

    Article  Google Scholar 

  • Borken W, Beese F (2005) Soil carbon dioxide efflux in pure and mixed stands of oak and beech following removal of organic horizons. Can J For Res 35:2756–2764. doi:10.1139/x05-192

    Article  CAS  Google Scholar 

  • Borken W, Beese F (2006) Methane and nitrous oxide fluxes of soils in pure and mixed stands of European beech and Norway spruce. Eur J Soil Sci 57:617–625. doi:10.1111/j.1365-2389.2005.00752.x

    Article  CAS  Google Scholar 

  • Borken W, Xu YJ, Beese F (2003) Conversion of hardwood forests to spruce and pine plantations strongly reduced soil methane sink in Germany. Global Change Biol 9:956–966. doi:10.1046/j.1365-2486.2003.00631.x

    Article  Google Scholar 

  • Bréchet L, Ponton S, Roy J, Freycon V, Coûteaux M, Bonal D, Epron D (2009) Do tree species characteristics influence soil respiration in tropical forests? A test based on 16 tree species planted in monospecific plots. Plant Soil 319:235–246. doi:10.1007/s11104-008-9866-z

    Article  Google Scholar 

  • Bremner JM (1996) Nitrogen-total. In: Sparks DL (ed) Methods of Soil Analysis. SSSA Book Ser, Madison, Wisconsin, pp 1085–1122

    Google Scholar 

  • Butterbach-Bahl K, Gasche R, Willibald G, Papen H (2002) Exchange of N-gases at the Hoglwald Forest—a summary. Plant Soil 240:117–123. doi:10.1023/A:1015825615309

    Article  CAS  Google Scholar 

  • Carnevalea NJ, Montagnini F (2002) Facilitating regeneration of secondary forests with the use of mixed and pure plantations of indigenous tree species. For Ecol Manage 163:217–227. doi:10.1016/S0378-1127(01)00581-3

    Article  Google Scholar 

  • Castaldi S, Ermice A, Strumia S (2006) Fluxes of N2O and CH4 from soils of savannas and seasonally-dry ecosystems. J Biogeogr 33:401–415. doi:10.1111/j.1365-2699.2005.01447.x

    Article  Google Scholar 

  • Castro MS, Gholz HL, Clark KL, Steudler PA (2000) Effects of forest harvesting on soil methane fluxes in Florida slash pine plantations. Can J For Res 30:1534–1542. doi:10.1139/cjfr-30-10-1534

    Article  Google Scholar 

  • Crutzen PJ, Mosier RA, Smith KA, Winiwater W (2007) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics Discussions 7:11191–11205

    Article  Google Scholar 

  • Dalal R, Allen D, Livesley S, Richards G (2008) Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged land-scapes: a review. Plant Soil 309:89–103. doi:10.1007/s11104-007-9446-7

    Article  Google Scholar 

  • Davidson EA, Keller M, Erickson HE, Verchot LV, Veldkamp E (2000) Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50:668–680. doi:10.1641/0006-3568(2000)050[0667:TACMOS]2.0.CO;2

    Google Scholar 

  • DSNR (2002) Soil Survey Standard Test Method—Particle Size Analysis. Department of Sustainable Natural Resources, NSW, Australia

    Google Scholar 

  • Epron D, Bosc A, Bonal D, Freycon V (2006) Spatial variation of soil respiration across a topographic gradient in a tropical rainforest in French Guiana. J Trop Ecol 22:565–574. doi:10.1017/S0266467406003415

    Article  Google Scholar 

  • Erickson H, Davidson EA, Keller M (2002) Former land-use and tree species affect nitrogen oxide emissions from a tropical dry forest. Oecologia 130:297–308. doi:10.1007/s004420100801

    Google Scholar 

  • Fang H, Mo JM, Peng SL, Li ZA, Wang H (2007) Cumulative effects of nitrogen additions on litter decomposition in three tropical forests in southern China. Plant Soil 297:233–242. doi:10.1007/s11104-007-9339-9

    Article  CAS  Google Scholar 

  • Fang YT, Gundersen P, Zhang W, Zhou GY, Christiansen JR, Mo JM, Dong SF, Zhang T (2009) Soil-atmosphere exchange of N2O, CO2 and CH4 along a slope of an evergreen broad-leaved forest in southern China. Plant Soil 317:37–48. doi:10.1007/s11104-008-9847-2

    Article  Google Scholar 

  • FAO (2007) State of The World’s Forests 2007. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fest BJ, Livesley SJ, Drösler M, Gorsel E, Arndt SK (2009) Soil-atmosphere greenhouse gas exchange in a cool, temperate Eucalyptus delegatensis forest in south-eastern Australia. Agr Forest Meteorol 149:393–406. doi:10.1016/j.agrformet.2008.09.007

    Article  Google Scholar 

  • Firestone MK, Davidson EA (1989) Microbiological basis on NO and N2O production and consumption in soils. In: Andreae MO, Schimel D (eds) Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. John Wiley and Sons, Chichester, UK, pp 7–21

    Google Scholar 

  • Gu L, Fuentes JD, Shugart HH, Staebler RM, Black TA (1999) Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness: Results from two North American deciduous forests. J Geophys Res 104(D24): 31421–31434.

    Google Scholar 

  • Hall SJ, Asner GP, Kitayama K (2004) Substrate, climate, and land use controls over soil N dynamics and N-oxide emissions in Borneo. Biogeochemistry 70:27–58. doi:10.1023/B:BIOG.0000049335.68897.87

    Article  CAS  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218. doi:10.1146/annurev.ecolsys.36.112904.151932

    Article  Google Scholar 

  • Hendricks JJ, Hendrick RL, Wilson CA, Mitchell RJ, Pecot SD, Guo DL (2006) Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. J Ecol 94:40–57. doi:10.1111/j.1365-2745.2005.01067.x

    Article  Google Scholar 

  • Hertel D, Harteveld MA, Leuschner C (2009) Conversion of a tropical forest into agroforest alters the fine root-related carbon flux to the soil. Soil Biol Biochem 41:481–490. doi:10.1016/j.soilbio.2008.11.020

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the scientific basis. Cambridge University Press, Cambridge, UK, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

    Google Scholar 

  • Jang I, Lee S, Hong JH, Kang H (2006) Methane oxidation rates in forest soils and their controlling variables: a review and a case study in Korea. Ecol Res 21:849–854. doi:10.1007/s11284-006-0041-9

    Article  CAS  Google Scholar 

  • Janssens IA, Lankreijer H, Matteucci G et al (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biol 7:269–278. doi:10.1046/j.1365-2486.2001.00412.x

    Article  Google Scholar 

  • Janssens IA, Sampso DA, Curiel-Yuste J, Carrara A, Ceulemans R (2002) The carbon cost of fine root turnover in a Scots pine forest. For Ecol Manage 168:231–240. doi:10.1016/S0378-1127(01)00755-1

    Article  Google Scholar 

  • Jonard M, Andre F, Jonard F, Mouton N, Proces P, Ponette Q (2007) Soil carbon dioxide efflux in pure and mixed stands of oak and beech. Ann For Sci 64:141–150. doi:10.1051/forest:2006098

    Article  CAS  Google Scholar 

  • Kelliher FM, Clark H, Zheng L, Newton PCD, Parsons AJ, Rys G (2006) A comment on scaling methane emissions from vegetation and grazing ruminants in New Zealand. Funct Plant Biol 33:613–615. doi:10.1071/FP06088

    Article  CAS  Google Scholar 

  • Khalil MI, Baggs EM (2005) CH4 oxidation and N2O emissions at varied soil water-filled pore spaces and headspace CH4 concentrations. Soil Biol Biochem 37:1785–1794. doi:10.1016/j.soilbio.2005.02.012

    Article  CAS  Google Scholar 

  • Kiese R, Butterbach-Bahl K (2002) N2O and CO2 emissions from three different tropical forest sites in the wet tropics of Queensland, Australia. Soil Biol Biochem 34:975–987. doi:10.1016/S0038-0717(02)00031-7

    Article  CAS  Google Scholar 

  • Kiese R, Hewett B, Graham A, Butterbach-Bahl K (2003) Seasonal variability of N2O emissions and CH4 uptake by tropical rainforest soils of Queensland Australia. Glob Biogeochem Cycles 17:1043. doi:10.1029/2002GB002014

    Article  Google Scholar 

  • Lal R, Kimble JM, Follett RF, Stewart BA (1998) Soil Processes and the Carbon Cycle. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50. doi:10.1016/S1164-5563(01)01067-6

    Article  Google Scholar 

  • Li CS, Frolking S, Butterbach-Bahl K (2005) Carbon Sequestration in Arable Soils is Likely to Increase Nitrous Oxide Emissions, Offsetting Reductions in Climate Radiative Forcing. Clim Change 72:321–338. doi:10.1007/s10584-005-6791-5

    Article  CAS  Google Scholar 

  • Liang RL (2007) Current situation of Guangxi indigenous broadleaf species resource and their development counter-measures. Guangxi Forestry Science 36:5–9

    Google Scholar 

  • Liang RL, Wen HH (1992) Application of Fertilizers in Pinus massoniana Plantations in Dapingshan, Guangxi Province. Forest Research 5:138–142

    Google Scholar 

  • Liu H, Zhao P, Lu P, Wang YS, Lin YB, XQ R (2008) Greenhouse gas fluxes from soils of different land-use types in a hilly area of South China. Agr Ecosyst Environ 124:125–135. doi:10.1016/j.agee.2007.09.002

    Article  CAS  Google Scholar 

  • Livesley SJ, Kiese R, Miehle P, Weston CJ, Butterbach-Bahl K, Arndt SK (2009) Soil-atmosphere exchange of greenhouse gases in a Eucalyptus marginata woodland, a clover-grass pasture, and Pinus radiata and Eucalyptus globulus plantations. Global Change Biol 15:425–440. doi:10.1111/j.1365-2486.2008.01759.x

    Article  Google Scholar 

  • Magill AH, Aber JD, Hendricks JJ, Bowden RD, Melillo JM, Steudler PA (1997) Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecol Appl 7:402–415. doi:10.1890/1051-0761(1997)007[0402:BROFET]2.0.CO;2

    Article  Google Scholar 

  • Maljanen M, Liikanen A, Silvola J, Martikainen PJ (2003) Nitrous oxide emissions from boreal organic soil under different land use. Soil Biol Biochem 35:689–700. doi:10.1016/S0038-0717(03)00085-3

    Article  CAS  Google Scholar 

  • Matson A, Pennock D, Bedard-Haughn A (2009) Methane and nitrous oxide emissions from mature forest stands in the boreal forest, Saskatchewan, Canada. For Ecol Manage 258:1073–1083. doi:10.1016/j.foreco.2009.05.034

    Article  Google Scholar 

  • McNamara NP, Black HIJ, Piearce TG, Reay DS, Ineson P (2008) The influence of afforestation and tree species on soil methane fluxes from shallow organic soils at the UK Gisburn Forest Experiment. Soil Use Manage 24:1–7. doi:10.1111/j.1475-2743.2008.00147.x

    Article  Google Scholar 

  • Merino A, Perez-Batallon P, Macias F (2004) Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperate region of southern Europe. Soil Biol Biochem 36:917–925. doi:10.1016/j.soilbio.2004.02.006

    Article  CAS  Google Scholar 

  • Mo JM, Zhang W, Zhu WX, Gundersen P, Fang YT, Li DJ, Wang H (2008) Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Global Change Biol 14:403–412. doi:10.1111/j.1365-2486.2007.01503.x

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter, in: second ed. (Eds), Methods of Soil Analysis. American Society of Agronomy Inc., Madison, Wisconsin, pp. 961–1010.

  • Paquette A, Messier C (2010) The role of plantations in managing the world’s forests in the Anthropocene. Front Ecol Environ 8:27–34. doi:10.1890/080116

    Article  Google Scholar 

  • Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manage 168:241–257. doi:10.1016/S0378-1127(01)00740-X

    Article  Google Scholar 

  • Peng SL, Wang DX, Zhao H, Yang T (2008) Discussion the status quality of plantation and near nature forestry management in China. Journal of Northwest Forestry University 23:184–188

    Google Scholar 

  • Pilegaard K, Skiba U, Ambus P (2006) Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O). Biogeosciences 3:651–661

    Article  CAS  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44:81–99. doi:10.1034/j.1600-0889.1992.t01-1-00001.x

    Article  Google Scholar 

  • Reay DS, Nedwell DB (2004) Methane oxidation in temperate soils: effects of inorganic N. Soil Biol Biochem 36:2059–2065. doi:10.1016/j.soilbio.2004.06.002

    Article  CAS  Google Scholar 

  • Regina K, Nykanen H, Silvola J, Martikainen PJ (1996) Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification potential. Biogeochemistry 35:401–418. doi:10.1007/BF02183033

    Article  CAS  Google Scholar 

  • Reichstein M, Rey A, Freibauer A et al (2003) Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Glob Biogeochem Cycles 17:1104. doi:10.1029/2003GB005035

    Article  Google Scholar 

  • Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289:1922–1925. doi:10.1126/science.289.5486.1922

    Article  CAS  PubMed  Google Scholar 

  • Rosenkranz P, Bruggemann N, Papen H, Xu Z, Horvath L, Butterbach-Bahl K (2006) Soil N and C trace gas fluxes and microbial soil N turnover in a sessile oak (Quercus petraea (Matt.) Liebl.) forest in Hungary. Plant Soil 286: 301–322. doi:10.1007/s11104-006-9045-z

    Google Scholar 

  • SFA (State Forestry Administration) (2007) China’s Forestry 1999–2005. China Forestry Publishing House, Beijing

    Google Scholar 

  • Sheng H, Yang YS, Yang ZJ, Chen GS, Xie JS, Guo JFN, Zou SQ (2009) The dynamic response of soil respiration to land-use changes in subtropical China. Global Change Biol. doi:10.1111/j.1365-2486.2009.01988.x

    Google Scholar 

  • Soil Survey Staff of USDA (2006) Keys to Soil Taxonomy. United States Department of Agriculture (USDA), Natural Resources Conservation Service, Washington, DC, USA.

  • Solomon S, Qin D, Manning M et al. (2007) Technical Summary. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Inter-governmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

  • Sotta ED, Meir P, Malhi Y, Nobre AD, Hodnett M, Grace J (2004) Soil CO2 efflux in a tropical forest in the central Amazon. Global Change Biol 10:601–617. doi:10.1111/j.1529-8817.2003.00761.x

    Article  Google Scholar 

  • State Soil Survey Service of China (1998) China Soil. China Agricultural Press, Beijing

    Google Scholar 

  • Stevens RJ, Laughlin RJ, Burns LC, Arah JRM, Hood RC (1997) Measuring the contributions of nitrification and denitrification to the flux of nitrous oxide from soil. Soil Biol Biochem 29:139–151. doi:10.1016/S0038-0717(96)00303-3

    Article  CAS  Google Scholar 

  • Tang XL, Liu SG, Zhou GY, Zhang DQ, Zhou CY (2006) Soil atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Global Change Biol 12:546–560. doi:10.1111/j.1365-2486.2006.01109.x

    Article  Google Scholar 

  • Topp E, Pattey E (1997) Soils as sources and sinks for atmospheric methane. Can J Soil Sci 77:167–178

    CAS  Google Scholar 

  • Ullah S, Frasier R, King L, Picotte-Anderson NP, Moore TR (2008) Potential fluxes of N2O and CH4 from soils of three forest types in Eastern Canada. Soil Biol Biochem 40:986–994. doi:10.1016/j.soilbio.2007.11.019

    Article  CAS  Google Scholar 

  • Valverde-Barrantes OJ (2007) Relationships among litterfall, fine-root growth, and soil respiration for five tropical tree species. Can J For Res 37:1954–1965. doi:10.1139/X07-057

    Article  CAS  Google Scholar 

  • Venterea RT, Groffman PM, Verchot LV, Magill AH, Aber JD, Steudler PA (2003) Nitrogen oxide gas emissions from temperate forest soils receiving long-term nitrogen inputs. Global Change Biol 9:346–357. doi:10.1046/j.1365-2486.2003.00591.x

    Article  Google Scholar 

  • Verchot LV, Davidson EA, Cattanio JH, Erickson HE, Keller M (1999) Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia. Glob Biogeochem Cycles 13:31–46

    Article  CAS  Google Scholar 

  • Verchot LV, Davidson EA, Cattanio JH, Ackerman IL (2000) Land-use change and biogeochemical controls of methane fluxes in soils of eastern Amazonia. Ecosystems 3:41–56. doi:10.1007/s100210000009

    Article  CAS  Google Scholar 

  • Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P (2008) Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For Ecol Manage 255:35–48. doi:10.1016/j.foreco.2007.08.015

    Article  Google Scholar 

  • Vogt KA, Persson H (1991) Measuring growth and development of roots. In: Lassoie JP, Hinckley TM (eds) Techniques and Approaches in Forest Tree Ecophysiology. CRC Press, Boca Raton, pp 477–501

    Google Scholar 

  • Wang YS, Wang YH (2003) Quick Measurement of CH4, CO2 and N2O emission from a short-plant ecosystem. Adv Atmos Sci 20:842–844

    Article  Google Scholar 

  • Wang XZ, Tang YH (2007) Route selection in undeveloped regions—research of Guangxi. Productivity Research 24:48–50

    Google Scholar 

  • Wang CK, Yang JY, Zhang QZ (2006) Soil respiration in six temperate forests in China. Global Change Biol 12:2103–2114. doi:10.1111/j.1365-2486.2006.01234.x

    Article  Google Scholar 

  • Werner C, Zheng XH, Tang JW, Xie BH, Liu CY, Kiese R, Butterbach-Bahl K (2006) N2O, CH4 and CO2 emissions from seasonal tropical rain forests and a rubber plantation in Southwest China. Plant Soil 289:335–353. doi:10.1007/s11104-006-9143-y

    Article  CAS  Google Scholar 

  • Werner C, Kiese R, Butterbach-Bahl K (2007) Soil-atmosphere exchange of N2O, CH4, and CO2 and controlling environmental factors for tropical rain forest sites in western Kenya. J Geophys Res-Atmos 112: DO3308. doi: 10.1029/2006JD007388

  • Xu XN, Hirata EJ (2005) Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest: N and P dynamics. Plant Soil 273:279–289. doi:10.1007/s11104-004-8069-5

    Article  CAS  Google Scholar 

  • Xu H, Chen GX, Ma CX (1995) A preliminary study on N2O and CH4 emissions from different soils on northern slope of Changbai Mountain. Chin J Appl Ecol 6:373–377

    Google Scholar 

  • Yang YS, Chen GS, Guo JF, Xie JS, Wang XG (2007) Soil respiration and carbon balance in a subtropical native forest and two managed plantations. Plant Ecol 193:71–84. doi:10.1007/s11258-006-9249-6

    Article  Google Scholar 

  • Zhang W, Mo JM, Yu GR, Fang YT, Li DJ, Lu XK, Wang H (2008a) Emissions of nitrous oxide from three tropical forests in Southern China in response to simulated nitrogen deposition. Plant Soil 306:221–236. doi:10.1007/s11104-008-9575-7

    Article  CAS  Google Scholar 

  • Zhang W, Mo JM, Zhou GY, Gundersen P, Fang YT, Lu XK, Zhang T, Dong SF (2008b) Methane uptake responses to nitrogen deposition in three tropical forests in southern China. J Geophys Res-Atmos 113:D11116. doi:10.1029/2007JD009195

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate Dr. Jingxin Wang, Dr. Zuomin Shi, Dr. Pengsen Sun, Dr. Wei Zhang, Dr. Yunting Fang, the section editor (Dr. Klaus Butterbach-Bahl), and three anonymous reviewers for their valuable comments and suggestions on the manuscript. We are grateful to Riming He, Ji Zeng, Angang Ming and Jixin Tang for their help with field sampling, and to Zhen Yu for his help with the graphs. We also gratefully acknowledge the support from the Experimental Center of Tropical Forestry, the Chinese Academy of Forestry. This study was funded by China’s National Natural Science Foundation (No. 30590383) and the Ministry of Finance (No. 200804001) and the Ministry of Science and Technology (No. 2006BAD03A04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirong Liu.

Additional information

Resposible Editor: Klaus Butterbach-Bahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Liu, S., Mo, J. et al. Soil-atmosphere exchange of greenhouse gases in subtropical plantations of indigenous tree species. Plant Soil 335, 213–227 (2010). https://doi.org/10.1007/s11104-010-0408-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0408-0

Keywords

Navigation