Skip to main content
Log in

Characterisation of root amino acid exudation in white clover (Trifolium repens L.)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The mechanism of root amino acid exudation was studied in white clover (Trifolium repens L.) to explain the apparent selectivity of this process resulting in contrasted amino acid profiles between root tissues and root exudates. Asparagine is generally recovered in low proportions in root exudates but represent a major fraction of amino acids in root tissues, and the opposite is found for glycine. Amino acid profiles were studied in two potential sites of intense exudation, root tips and nodules, and a 15N labelling method was used to compare influxes and effluxes of different amino acids. Metabolic inhibitors were used to test the assumption that amino acid exudation is a passive process. We observed that amino acid profiles were similar between whole roots, root tips and nodules. Influxes of asparagine and glycine were in the same range, but efflux of glycine largely exceeded efflux of asparagine. Metabolic inhibitors strongly reduced glycine influx and modified glycine efflux. It is concluded that the selectivity of amino acid exudation is not explained by the composition of putative intense sites of exudation but is explained by highly contrasted effluxes between amino acids. The effect of metabolic inhibitors shows that glycine efflux occurs not only as a simple passive leakage. These results suggest that amino acid exudation is a plant-controlled process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aubert S, Hennion F, Bouchereau A, Gout E, Bligny R, Dorne AJ (1999) Subcellular compartmentation of proline in the leaves of the subantarctic Kerguelen cabbage Pringlea antiscorbutica R. Br. In vivo 13C-NMR study. Plant Cell Environ 22:255–259

    Article  CAS  Google Scholar 

  • Badri DV, Loyola-Vargas VM, Broeckling CD, De-la-Pena C, Jasinski M, Santelia D, Martinoia E, Summer LW, Banta LM, Stermitz F, Vivanco JM (2008) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporters mutants. Plant Physiol 146:762–771

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Borstlap AC, Schuurmans JAMJ (2004) Sucrose transport into plasma membrane vesicles from tobacco leaves by H+ symport or counter exchange does not display a linear component. J Membr Biol 198:31–42

    Article  CAS  PubMed  Google Scholar 

  • Britto DT, Kronzucker HJ (2001) Can unidirectional influx be measured in higher plants? A mathematical approach using parameters from efflux analysis. New Phytol 150:37–47

    Article  CAS  Google Scholar 

  • Carroll AD, Stewart GR, Phillips R (1992) Dynamics of nitrogenous assimilate partitioning between cytoplasmic and vacuolar fractions in carrot cell suspension cultures. Plant Physiol 100:1808–1814

    Article  CAS  PubMed  Google Scholar 

  • Cerezo M, Tillard P, Gojon A, Primo-Millo E, Garcia-Agustin P (2001) Characterization and regulation of ammonium transport systems in Citrus plants. Planta 214:97–105

    Article  CAS  PubMed  Google Scholar 

  • DiTomaso JM, Hart JJ, Linscott DL, Kochian LV (1992) Effect of inorganic cations and metabolic inhibitors on putrescine transport in roots of intact maize seedlings. Plant Physiol 99:508–514

    Article  CAS  PubMed  Google Scholar 

  • Fischer WN, Loo DF, Koch W, Ludewig U, Boorer KJ, Tegeder M, Rentsch D, Wright EM, Frommer WB (2002) Low and high affinity amino acid H + -cotransporters for cellular import of neutral and charged amino acids. Plant J 29:717–731

    Article  CAS  PubMed  Google Scholar 

  • Gallagher SR, Leonard RT (1982) Effect of vanadate, molybdate, and azide on membrane-associated ATPase and soluble phosphatase activities of corn roots. Plant Physiol 70:1335–1340

    Article  CAS  PubMed  Google Scholar 

  • Godber IM, Parsons R (1998) Translocation of amino acids from stem nodules of Sesbania rostrata demonstrated by GC-MS in planta 15N isotope dilution. Plant Cell Environ 21:1089–1099

    Article  CAS  Google Scholar 

  • Hertenberger G, Wanek W (2004) Evaluation of methods to measure differential 15N labeling of soil and root N pools for studies of root exudation. Rapid Commun Mass Spectrom 18:2415–2425

    Article  CAS  PubMed  Google Scholar 

  • Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, Frommer WB, Koch W (2006) Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18:1931–1946

    Article  CAS  PubMed  Google Scholar 

  • Hsu FC, Bennett AB, Spanswick RM (1984) Concentration of sucrose and nitrogenous compounds in the apoplast of developing soybean seed coats and embryos. Plant Physiol 75:181–186

    Article  CAS  PubMed  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere - a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR (1994) Amino-acid influx at the soil-root interface of Zea mays L. and its implications in the rhizosphere. Plant Soil 163:1–12

    CAS  Google Scholar 

  • Jones DL, Owen AG, Farrar JF (2002) Simple method to enable the high resolution determination of total free amino acids in soil solutions and soil extracts. Soil Biol Biochem 34:1893–1902

    Article  CAS  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Jones DL, Shannon D, Junvee-Fortune T, Farrar JF (2005) Plant capture of free amino acids is maximized under high soil amino acid concentrations. Soil Biol Biochem 37:179–181

    Article  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Kraffczyk I, Trolldenier G, Beringer H (1984) Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biol Biochem 16:315–322

    Article  CAS  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM (1995a) Analysis of 13NH +4 efflux in spruce roots (A test case for phase identification in compartmental analysis). Plant Physiol 109:481–490

    CAS  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM (1995b) Compartmentation and flux characteristics of nitrate in spruce. Planta 196:674–682

    Article  CAS  Google Scholar 

  • Lanfermeijer FC, Van Oene MA, Borstlap AC (1992) Compartmental analysis of amino-acid release from attached and detached pea seed coats. Planta 187:75–82

    Article  CAS  Google Scholar 

  • Lee YH, Foster J, Chen J, Voll LM, Weber APM, Tegeder M (2007) AAP1 transports uncharged amino acids into roots of Arabidopsis. Plant J 50:305–319

    Article  CAS  PubMed  Google Scholar 

  • Lesuffleur F, Paynel F, Bataille MP, Le Deunff E, Cliquet JB (2007) Root amino acid exudation: measurement of high efflux rates of glycine and serine from six different plant species. Plant Soil 294:235–246

    Article  CAS  Google Scholar 

  • Loyola-Vargas VM, Broeckling CD, Badri D, Vivanco JM (2007) Effect of transporters on the secretion of phytochemicals by the roots of Arabidopsis thaliana. Planta 225:301–310

    Article  CAS  PubMed  Google Scholar 

  • Lynch JM, Wipps TM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  • Mouillon JM, Aubert S, Bourguignon J, Gout E, Douce R, Rebeille F (1999) Glycine and serine catabolism in non-photosynthetic higher plant cells: their role in C1 metabolism. Plant J 20:197–205

    Article  CAS  PubMed  Google Scholar 

  • Neelam A, Marvier AC, Hall JL, Williams LE (1999) Functional characterization and expression analysis of the amino acid permease RcAAP3 from castor bean. Plant Physiol 120:1049–1056

    Article  CAS  PubMed  Google Scholar 

  • Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610

    Article  CAS  PubMed  Google Scholar 

  • Paynel F, Murray PJ, Cliquet JB (2001) Root exudates: a pathway for short-term N transfer from clover and ryegrass. Plant Soil 229:235–243

    Article  CAS  Google Scholar 

  • Persson J, Näsholm T (2002) Regulation of amino acid uptake in conifers by exogenous and endogenous nitrogen. Planta 215:639–644

    Article  CAS  PubMed  Google Scholar 

  • Phillips DA, Fox TC, King MD, Bhuvaneswari TV, Teuber LR (2004) Microbial products trigger amino acid exudation from plant roots. Plant Physiol 136:2887–2894

    Article  CAS  PubMed  Google Scholar 

  • Raab TK, Lipson DA, Monson RK (1996) Non-mycorrhizal uptake of amino acids by roots of the alpine sedge Kobresia myosuroides: implications for the alpine nitrogen cycle. Oecologia 108:488–494

    Article  Google Scholar 

  • Rroço E, Kosegarten H, Mengel K (2002) Importance of plasmalemma H+-ATPase activity for N losses from intact roots of spring wheat (Triticum aestivum L.). Eur J Agron 16:187–196

    Article  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic acid exudation from roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama A, Shitan N, Yasaki K (2007) Involvement of a soybean ATP-binding cassette-type transporter in the secretion of genistein, a signal flavonoid in legume-Rhizobium symbiosis. Plant Physiol 144:2000–2008

    Article  CAS  PubMed  Google Scholar 

  • Svennerstam H, Ganeteg U, Näsholm T (2008) Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5. New Phytol 180:620–630

    Article  CAS  PubMed  Google Scholar 

  • Thornton B, Osborne SM, Paterson E, Cash P (2007) A proteomic and targeted metabolomic approach to investigate change in Lolium perenne roots when challenged with glycine. J Exp Bot 58:1581–1590

    Article  CAS  PubMed  Google Scholar 

  • Tilsner J, Kassner N, Struck C, Lohaus G (2005) Amino acid contents and transport in oilseed rape (Brassica napus L.) under different nitrogen conditions. Planta 221:328–338

    Article  CAS  PubMed  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  PubMed  Google Scholar 

  • White J, Prell J, James EK, Poole P (2007) Nutrient sharing between symbionts. Plant Physiol 144:604–614

    Article  CAS  PubMed  Google Scholar 

  • Wipf D, Benjdia M, Tegeder M, Frommer WB (2002) Characterization of a general amino acid permease from Hebeloma cylindrosporum. FEBS Lett 528:119–124

    Article  CAS  PubMed  Google Scholar 

  • Wyse RE, Komor E (1984) Mechanism of amino acid uptake by sugarcane suspension cells. Plant Physiol 76:865–870

    Article  CAS  PubMed  Google Scholar 

  • Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr PJ Murray, Dr E Le Deunff, Dr A Morvan-Bertrand and Dr L Cantrill for critical comments and advice on the manuscript. We are grateful to MP Bataillé and A Bré for technical assistance on amino acid and isotopic analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Bernard Cliquet.

Additional information

Responsible Editor: A.C. Borstlap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesuffleur, F., Cliquet, JB. Characterisation of root amino acid exudation in white clover (Trifolium repens L.). Plant Soil 333, 191–201 (2010). https://doi.org/10.1007/s11104-010-0334-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0334-1

Keywords

Navigation