Skip to main content

Advertisement

Log in

Long-term changes of the δ15N natural abundance of plants and soil in a temperate grassland

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Tracing back the N use efficiency of long-term fertilizer trials is important for future management recommendations. Here we tested the changes in natural N-isotope composition as an indicator for N- management within a long-term fertilization lysimeter experiment in a low mountain range pasture ecosystem at Rengen (Eifel Mountains), Germany. Cattle slurry (δ15N = 8.9 ± 0.5‰) and mineral fertilizers (calcium ammonium nitrate; δ15N = −1.0 ± 0.2‰) were applied at a rate between 0 and 480 kg N ha−1 yr−1 throughout 20 years from 1985 onwards. In 2006, samples were taken from different grass species, coarse and fine particulate soil organic matter, bulk soil and leachates. Total soil N content hardly changed during fertilization experiment. As also N leaching has been small within the stagnant water regime, most N was lost through the gaseous phase beside plant uptake and cutting. Unlike N uptake by plants, the process of N volatilization resulted in strong discrimination against the 15N isotope. As a consequence, the δ15N values of top soil samples increased from 1.8 ± 0.4‰ to 6.0 ± 0.4‰ and that of the plants from −1.2 ± 1.3‰ to 4.8 ± 1.2‰ with increasing N fertilizer rate. Samples receiving organic fertilizer were most enriched in δ15N. The results suggest that parts of the fertilizer N signal was preserved in soils and even discovered in soil organic matter pools with slow N turnover. However, a 15N/14N isotope fractionation of up to 1.5‰ added to the δ15N values recovered in soils and plants, rendering the increase in δ15N value a powerful indicator to long-term inefficient N usage and past N management in the terrestrial environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amelung W, Zech W, Zhang X, Follett RF, Tiessen H, Knox E, Flach W (1998) Carbon, nitrogen, and sulfur pools in particle size fractions as influenced by climate. Soil Sci Soc Am J 62:172–181

    CAS  Google Scholar 

  • Amelung W, Flach KW, Zech W (1999) Lignin in particle-size fractions of native grassland soils as influenced by climate. Soil Sci Soc Am J 63:1222–1228

    CAS  Google Scholar 

  • Amelung W, Zhang X, Flach KW (2006) Amino acids in grassland soils: climatic effects on concentrations and chirality. Geoderma 130:207–217. doi:10.1016/j.geoderma.2005.01.017

    Article  CAS  Google Scholar 

  • Balabane M, Balesdent J (1995) Medium- term transformations of organic N in a cultivated soil. Eur J Soil Sci 46:497–505. doi:10.1111/j.1365-2389.1995.tb01346.x

    Article  Google Scholar 

  • Balesdent J (1996) The significance of organic separates to carbon dynamics and its modelling in some cultivated soils. Eur J Soil Sci 47:485–493. doi:10.1111/j.1365-2389.1996.tb01848.x

    Article  CAS  Google Scholar 

  • Balesdent J, Mariotti A (1996) Measurement of SOM turnover using 13C natural abundance. (1996). In: Boutton TW, Yamasaki S (eds) Mass Spectrometry of Soils. Marcel Dekker, New York, pp 83–111

    Google Scholar 

  • Bol R, Amelung W, Friedrich C, Ostle N (2000) Tracing dung-derived carbon in temperate grassland using 13C natural abundance measurements. Soil Biol Biochem 32:1337–1343

    Article  CAS  Google Scholar 

  • Bol R, Bolder T, Cully R, Little D (2003) Recalcitrant soil organic materials mineralize more effieciently at higher temperatures. J Plant Nutr Soil Sci 166:300–307

    Article  CAS  Google Scholar 

  • Bol R, Eriksen J, Smith P, Garnett MH, Coleman K, Christensen BT (2005) The natural abundance of 13C, 15N, 34 S and 14C in archieved (1923–2000) plant and soil samples from the Askov long-term experiments on animal manure and mineral fertilizer. Rapid Comm In Mass Spec 19:3216–3226

    Article  CAS  Google Scholar 

  • Bristow AW, Ryden AC, Whitehead DC (1987) The fate at several time intervals of I5N-labelled ammonium nitrate applied to an established grass sward. J Soil Sci 38:245–254. doi:10.1111/j.1365-2389.1987.tb02142.x

    Article  CAS  Google Scholar 

  • Choi WJ, Lee SM, Ro HM, Kim KC, Yoo SH (2002) Natural N15 abundance of maize and soil amended with urea and compasted pig manure. Plant Soil 245:223–232

    Article  CAS  Google Scholar 

  • Choi WJ, Ro HM, Hobbie EA (2003) Patterns of natural 15 N in soils and plants from chemically and organically fertilized uplands. Soil Biol Biochem 35:1493–1500. doi:10.1016/S0038-0717(03)00246-3

    Article  CAS  Google Scholar 

  • Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable Isotopes in Plant Ecology. Annu Rev Ecol Syst 33:507–559. doi:10.1146/annurev.ecolsys.33.020602.095451

    Article  Google Scholar 

  • Delwiche CC, Zinke PH, Johnson CM, Virginia RA (1979) Nitrogen isotope distribution as a presumptive indicator of nitrogen fixation. Bot Gaz 140:65–69. doi:10.1086/337037

    Article  CAS  Google Scholar 

  • Dittert K, Georges T, Sattelmacher B (1998) Nitrogen turnover in soil after application of animal manure and slurry as studied by stable isotope 15 N: a review. Z. Pflanzenernähr. Bodenk 161:453–463

    CAS  Google Scholar 

  • Edmeades DC (2002) The long-term effects of manure and fertilisers on soil productivity and quality: a review. Nutr Cycl Agroecosyst 66:165–180. doi:10.1023/A:1023999816690

    Article  Google Scholar 

  • Estavillo JM, Rodriguez M, Lacuesta M, Gonzalez-Murua C (1997) Effects of cattle slurry and mineral N fertilizer application on various components of the nitrogen balance of mown grassland. Plant Soil 188:49–58. doi:10.1023/A:1004248228162

    Article  CAS  Google Scholar 

  • Evans DR (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6:121–126. doi:10.1016/S1360-1385(01)01889-1

    Article  CAS  PubMed  Google Scholar 

  • Falloon PD, Smith P (2000) Modelling refractory soil organic matter. Biol Fertil Soils 30:388–398. doi:10.1007/s003740050019

    Article  Google Scholar 

  • Flores P, Fenoll J, Hellín P (2007) The feasibility of using δ15N and δ13C values for discrimination between conventionally and organically fertilized pepper (Capsicum annuum L.). J Agric Food Chem 55:5740–5745. doi:10.1021/jf0701180

    Article  CAS  PubMed  Google Scholar 

  • Fraser PM, Cameron KC, Sherlock RR (1994) Lysimeter study of the fate of nitrogen in animal urine returns to irrigated pasture. Eur J Soil Sci 45:439–447. doi:10.1111/j.1365-2389.1994.tb00529.x

    Article  CAS  Google Scholar 

  • Gerzabek MH, Haberhauer G, Kirchmann H (2001) Nitrogen distribution and 15 N natural abundance in particle size fraction of a long-term agricultural field experiment. J Plant Nutr Soil Sci 164:475–481. doi:10.1002/1522-2624(200110) 164:5<475::AID-JPLN475>3.0.CO;2-U

    Article  CAS  Google Scholar 

  • Gioacchini P, Masia A, Canaccini F, Boldreghini P, Tonon G (2006) Isotopic discrimination during litter decomposition and δ13C and δ15N soil profiles in a young artificial stand and in an old Woodplain forest. Isotopes Environ Health Stud 42:135–149. doi:10.1080/10256010600671357

    Article  CAS  PubMed  Google Scholar 

  • Glaser B, Bol R, Preedy N, McTiernan KB, Clark M, Amelung W (2001) Short-term sequestration of slurry-derived carbon and nitrogen in temperate grassland soil as assessed by 13C and 15 N natural abundance measurements. Plant Nutr Soil Sci 164:467–474

    Article  CAS  Google Scholar 

  • Handley LL, Raven JA (1992) The use of natural abundance of nitrogen isotope in plant physiology and ecology. Plant Cell Environ 15:965–985. doi:10.1111/j.1365-3040.1992.tb01650.x

    Article  CAS  Google Scholar 

  • Handley LL, Austin AT, Robinson D, Scrimgeour CM, Raven JA (1999) The natural 15 N natural abundance (δ15N) of ecosystem samples reflects measures of water availability. Aust J Plant Physiol 26:185–199

    Article  Google Scholar 

  • Hatch DJ, Sprosen MS, Jarvis SC, Ledgard SF (2002) Use of labelled nitrogen to measure gross and net of mineralization and microbial activityin permanent pastures following fertilizer applications at different time intervals. Rapid Commun Mass Spectrom 16:2172–2178. doi:10.1002/rcm.783

    Article  CAS  PubMed  Google Scholar 

  • Högberg P (1991) Development of N-15 Enrichment in a Nitrogen- Fertilized Forest Soil Plant-System. Soil Biol Biochem 23:335–338. doi:10.1016/0038-0717(91)90188-P

    Article  Google Scholar 

  • Högberg P (1997) 15 N natural abundance in soil- plant systems. New Phytol 137:179–203. doi:10.1046/j.1469-8137.1997.00808.x

    Article  Google Scholar 

  • Högberg P, Johannisson C (1993) 15 N abundance of forest is correlated with losses of nitrogen. Plant Soil 157:147–150

    Google Scholar 

  • Högberg P, Högbom L, Schinkel H, Högberg M, Johannisson C, Wallmark H (1996) 15 N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia 108:207–214

    Google Scholar 

  • Jansson PE, Berg B (1985) Temporal variations of litter decomposition in relation to simulated soil climate- Long-term decomposition in a scots on pine forest. Can J Bot 63:1008–1016

    Article  Google Scholar 

  • Jenkinson DS, Poulton PR, Johnston AE, Powlson DS (2004) Turnover of Nitrogen- 15- Labeled Fertilizer in Old Grassland. Soil Sci Soc Am J 68:865–875

    Article  CAS  Google Scholar 

  • Johannisson C, Högberg P (1994) 15 N abundance of soils and plants along an experimentally induced forest nitrogen supply gradient. Oecologia 97:322–325

    Google Scholar 

  • Kerley SJ, Jarvis SC (1996) Preliminary studies of the impact of excreted N on cycling and uptake of N in pasture systems using natural abundance stable isotope discrimination. Plant Soil 178:287–294. doi:10.1007/BF00011595

    Article  CAS  Google Scholar 

  • Kerley SJ, Jarvis SC (1997) Variation in N-15 natural abundance of soil, humic fractions and plant materials in a disturbed and an undisturbed grassland. Biol Fertil Soils 24:147–152

    Article  CAS  Google Scholar 

  • Kersebaum KC (2007) Modelling nitrogen dynamics in soil–crop systems with HERMES. Nutr Cycl Agroecosyst 77:39–52. doi:10.1007/s10705-006-9044-8

    Article  Google Scholar 

  • Kimura T, Kumashira K (1991) Quantitative estimates of the budget of nitrogen applied as fertilizer, urine and feces in a soil grass system. JARQ 25:101–107

    Google Scholar 

  • Kölbl A, Von Lützow M, Kögel-Knabner I (2006) Decomposition and distribution of N-15 labelled mustard litter (Sinapis alba) in physical soil fractions of a cropland with high- and low-yield field areas. Soil Biol Biochem 38:3292–3302. doi:10.1016/j.soilbio.2006.04.010

    Article  CAS  Google Scholar 

  • Kreitler CW (1979) Nitrogen isotope ratio studies of soils and groundwater nitrate from alluvial fan aquifers in Texas. J Hydrol (Amst) 42:147–170. doi:10.1016/0022-1694(79)90011-8

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2002) Review: Factors affecting rhizospere priming effects. J Plant Nutr Soil Sci 165:382–396

    Article  CAS  Google Scholar 

  • Lobe I, Bol R, Ludwig B, Du Preez CC, Amelung W (2005) Savanna-derived organic matter remaining in arable soils of the South African Highveld after long-term mixed cropping - evidence from 13C and 15 N natural abundance. Soil Biol Biochem 37:1898–1909. doi:10.1016/j.soilbio.2005.02.030

    Article  CAS  Google Scholar 

  • Mariotti A (1984) Atmospheric nitrogen is a reliable standard for natural 15 N abundance measurements. Nature 311:251–252. doi:10.1038/311251a0

    Article  CAS  Google Scholar 

  • Mariotti A, Germon JC, Hubert P, Kaiser P, Letolle R, Tardieux A, Tardieux P (1981) Experimental determination of nitrogen kinetic fractionation: some principles; illustration for the denitrification and nitrification processess. Plant Soil 62:413–430. doi:10.1007/BF02374138

    Article  CAS  Google Scholar 

  • Mulholland PJ, Tank Jl, Sanzone DM, Wollheim WM, Peterson BJ, Webster JR, Meyer JL (2000) Nitrogen cycling in a forest stream determined by a N-15 tracer addition. Ecol Monogr 70:471–493

    Google Scholar 

  • Nadelhoffer K, Shaver G, Fry B, Giblin A, Johnson L, McKane R (1996) 15 N natural abundance and use by tundra plants. Oecologia 107:386–394. doi:10.1007/BF00328456

    Article  Google Scholar 

  • Paynel F, Lesuffleur F, Bigot J, Diquélou S, Cliquet JB (2008) A study of 15N transfer between legumes and grasses. Agron Sustain Dev 28:1–10. doi:10.1051/agro:2007061

    Article  CAS  Google Scholar 

  • Perakis SS, Hedin LO (2001) Fluxes and fates of nitrogen in soil of an unpolluted old- growth temperate forest, southern Chile. Ecology 82:2245–2260

    Google Scholar 

  • Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162. doi:10.1016/S0169-5347(00) 02098-X

    Article  PubMed  Google Scholar 

  • Schellberg J, Möseler BM, Kühbauch W, Rademacher IF (1999) Long-term effects of fertilizer on soil nutrient concentration, yield, forage quality and floristic composition of a hay meadow in the Eifel mountains, Germany. Grass Forage Sci 54:195–207. doi:10.1046/j.1365-2494.1999.00166.x

    Article  CAS  Google Scholar 

  • Shearer G, Kohl DH (1989) In: Rundel PW, Ehleringer JR, Nagy KA (Eds.) Stable Isotopes in Ecological Research, Springer, New York, pp 342–347

  • Shearer GB, Kohl DH, Commoner B (1974) Precision of determination of natural abundance of nitrogen-15 in soil, fertilizers, and shelf chemicals. Soil Sci 118:308–316. doi:10.1097/00010694-197411000-00005

    Article  CAS  Google Scholar 

  • Schulte auf´m Erley G, Rademacher I, Kühbauch W (2001) Leaf anatomy of a fast- and a slow-growing grass as dependent on nitrogen supply. J Agron Crop Sci 187:231–239

    Article  Google Scholar 

  • Sørensen P, Jensen ES, Nielsen NE (1994) The fate of 15N- labelled organic nitrogen in sheep manure applied to soils of different texture under field conditions. Plant Soil 162:39–47

    Article  Google Scholar 

  • Stenger R, Priesack E, Barkle G, Sperr C (1999) Expert-N. A tool for simulating nitrogen and carbon dynamics in the soil-plant-atmosphere system. NZ Land Treatment Collective. Proceedings Technical Session 20: Modelling of Land Treatment Systems. Tomer M, Robinson M, Gielen G (eds.) New Plymouth, New Zealand, pp 19–28

  • Trumbore SE, Vogel JS, Southon JR (1989) AMS 14C measurements of fractionated soil organic matter: an approach to deciphering the soil carbon cycle. Radiocarbon 31:644–654

    Google Scholar 

  • Wassenaar LI (1995) Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of 15 N and 18O in NO3-. Appl Geochem 10:391–405. doi:10.1016/0883-2927(95)00013-A

    Article  CAS  Google Scholar 

  • Watzka M, Buchgraber K, Wanek W (2006) Natural 15 N abundance of plants and soils under different management practise in a montane grassland. Soil Biol Biochem 38:1564–1576. doi:10.1016/j.soilbio.2005.11.007

    Article  CAS  Google Scholar 

  • Wang H, Magesan GN, Clinton PW, Lavery JM (2005) Using natural 15 N abundances to trace the fate of waste-derived nitrogen in forest ecosystems: New Zealand case studies. Isotope Environ Health Stud 4:31–38

    Article  CAS  Google Scholar 

  • Yoneyama T (1996) Characterization of natural 15N abundance of soils. In: Boutton TW, Yamasaki S (eds) Mass Spectrometry of Soils. Marcel Dekker, New York, USA, pp 204–223

    Google Scholar 

Download references

Acknowledgement

The authors are grateful to the German Science Foundation (DFG) for the financial support of this investigation.

We are indebted to Hans Schnyder and Rudi Schäufele of the Grassland Science Laboratory of the Munich Technical University for analyses of isotopic composition and helpful discussions and comments. The technical assistance of the colleagues of the Research Station and the laboratory staff is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Kriszan.

Additional information

Responsible Editor: Ingrid Koegel-Knabner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kriszan, M., Amelung, W., Schellberg, J. et al. Long-term changes of the δ15N natural abundance of plants and soil in a temperate grassland. Plant Soil 325, 157–169 (2009). https://doi.org/10.1007/s11104-009-9965-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9965-5

Keywords

Navigation