Skip to main content
Log in

Improving N2 fixation from the plant down: Compatibility of Trifolium subterraneum L. cultivars with soil rhizobia can influence symbiotic performance

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Plant genotypes of Trifolium subterraneum L. (subterranean clover) were evaluated for differences in symbiotic N2 fixation with soil rhizobia, with the long-term aim of using plant selection to overcome sub-optimal N2 fixation associated with poorly effective soil rhizobia. Symbiotic performance (SP) was assessed for 49 genotypes of subterranean clover with each of four pure Rhizobium strains isolated from soil. Plants were grown in N free media in the greenhouse and their shoot dry weights measured and expressed as a percentage of dry weight with R. leguminosarm bv. trifolii WSM1325, the recommended commercial inoculant. Average SP with two Rhizobium strains (H and J) ranged from completely ineffective to 80% of potential for the subterranean clover genotypes. Two clover cultivars with high (cv. Campeda) and low (cv. Clare) SP values were investigated in more detail. Campeda typically fixed more N2 than Clare when inoculated with 30 soil extracts (4.2 vs 2.4 mg N2 fixed/shoot) and with 14 pure strains isolated from those soils (4.2 vs 2.2 mg N2 fixed/shoot). The poor performance of Clare could be attributed to interruptions at multiple stages of the symbiotic association, from nodule initiation (less nodules), nodule development (small, white nodules), through to reduced nodule function (N2 fixed/mg nodule) depending on the inoculation treatment. Through the careful use of subterranean clover genotypes by plant breeders it should be possible to make significant gains in the SP of future subterranean clover cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anon (1985a) Register of Australian Herbage Plant Cultivars B. Legumes 1. Clover Trifolium subterraneum ssp. subterraneum (Katzn. et Morley) Zohary and Heller (sub clover) cv. Green Range. J Aust Inst Agric Sc 51:298–300

    Google Scholar 

  • Anon (1985b) Register of Australian Herbage Plant Cultivars B. Legumes 1. Clover Trifolium subterraneum ssp. subterraneum (Katzn. et Morley) Zohary and Heller (subclover) cv. Junee. J Aust Inst Agric Scc 51:293–295

    Google Scholar 

  • Anon (1985c) Register of Australian Herbage Plant Cultivars B. Legumes 1. Clover Trifolium subterraneum ssp. subterraneum (Katzn. et Morley) Zohary and Heller (subclover) cv. Karridale. J Aust Inst Agric Sc 51:295–298

    Google Scholar 

  • Anon (1989) Register of Australian Herbage Plant Cultivars B. Legumes 1. Clover Trifolium subterraneum ssp. brachycalycinum (Katzn. et Morley) Zohary and Heller (sub clover) cv. Rosedale. Aust J Exp Agric 29:295

    Article  Google Scholar 

  • Ballard RA, Charman N (2000) Nodulation and growth of pasture legumes with naturalised soil rhizobia: 1. Annual Medicago spp. Aust J Exp Agric 40:939–948

    Article  Google Scholar 

  • Ballard RA, Charman N, Craig AD, et al. (2000) Symbiotic performance of pasture legumes with naturalised soil rhizobia. In Legumes for Mediterranean forage crops, pastures and alternative uses. Proceedings of the 10th meeting of the Mediterranean Sub-Network of the FAO-CIHEAM Inter-Regional Cooperative Research and Development Network on Pastures and Fodder Crops, Sassari, Italy, 4–9 April 2000. pp 315–319

  • Ballard RA, Craig AD, Charman N (2002) Nodulation and growth of pasture legumes with naturalised soil rhizobia. 2. Balansa clover (Trifolium michelianum Savi). Aust J Exp Agric 42:939–944

    Article  Google Scholar 

  • Brockwell J (1963) Accuracy of a plant-infection technique for counting populations of Rhizobium trifolii. Appl Microbiol 11:377–383

    PubMed  CAS  Google Scholar 

  • Brockwell J (1975) Studies of field populations of Rhizobium: relationships between strain effectiveness, soil nitrogen levels, and response to applied nitrogen in subterranean clover pastures in north-eastern Victoria. Field Stn Rec 14:1–8

    Google Scholar 

  • Brockwell J (1982) Plant-infection counts of rhizobia in soils. In Nitrogen Fixation in Legumes. Ed. JM Vincent. pp 41–58

  • Brockwell J, Holliday RA, Pilka A (1988) Evaluation of the symbiotic nitrogen-fixing potential of soils by direct microbiological means. Plant Soil 108:163–170

    Article  Google Scholar 

  • Brockwell J, Bottomley PJ, Thies JE (1995) Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. Plant Soil 174:143–180

    Article  CAS  Google Scholar 

  • Brockwell J, Fettell NA, Bowman AM et al (2008) Symbiotic competence of rose clover (Trifolium hirtum All.). Aust J Agric Res 59:802–813

    Article  CAS  Google Scholar 

  • Broughton WJ (1978) A review. Control of specificity in legume-Rhizobium associations. J App Bacteriol 45:165–194

    Google Scholar 

  • Cocks PS (1980) Limitations imposed by nitrogen deficiency on the productivity of subterranean clover-based annual pasture in southern Australia. Aust J Agric Res 31:95–107

    Article  CAS  Google Scholar 

  • Dear BS, Hackney B (2006) Mintaro Subterranean Clover. Ed. PaSP Industries. pp 1–2. DPI NSW

  • Dear BS, Nichols PGH, Clark SG, et al. (1996) Register of Australian Herbage Plant Cultivars B. Legumes 1. Clover (d) Trifolium subterraneum L. var. yanninicum (Katz et Morley) Zohary and Heller (subterranean clover) cv. Riverina. Aust J Ex Agric 36

  • Demezas DH, Bottomley PJ (1986a) Autecology in rhizospheres and nodulating behavior of indigenous Rhizobium trifolii. Appl Environ Microbiol 52:1014–1019

    PubMed  Google Scholar 

  • Demezas DH, Bottomley PJ (1986b) Interstrain competition between representatives of indigenous serotypes of Rhizobium trifolii. Appl Environ Microbiol 52:1020–1025

    PubMed  Google Scholar 

  • Denton MD, Coventry DR, Bellotti WD et al (2000) Distribution, abundance and symbiotic effectiveness of Rhizobium leguminosarum bv. trifolii from alkaline pasture soils in South Australia. Aust J Exp Agric 40:25–35

    Article  Google Scholar 

  • Denton MD, Coventry DR, Murphy PJ et al (2002) Competition between inoculant and naturalised Rhizobium leguminosarum bv. trifolii for nodulation of annual clovers in alkaline soils. Aust J Agric Res 53:1019–1026

    Article  CAS  Google Scholar 

  • Denton MD, Reeve WG, Howieson JG et al (2003) Competitive abilities of common field isolates and a commercial strain of Rhizobium leguminosarum bv. trifolii for clover nodule occupancy. Soil Biol Biochem 35:1039–1048

    Article  CAS  Google Scholar 

  • Dowling DN, Broughton WJ (1986) Competition for nodulation of legumes. Ann Rev Microbiol 40:131–157

    Article  CAS  Google Scholar 

  • Gibson AH, Brockwell J (1968) Symbiotic characteristics of subspecies of Trifolium subterraneum L. Aust J Agric Res 19:891–905

    Article  Google Scholar 

  • Gibson AH, Curnow BC, Bergersen FJ et al (1975) Studies of field populations of Rhizobium: effectiveness of strains of Rhizobium trifolii associated with Trifolium subterraneum L. pastures in south-eastern Australia. Soil Biol Biochem 7:95–102

    Article  Google Scholar 

  • Gladstones JS, Collins WJ (1983) Subterranean clover as a naturalized plant in Australia. J Aust Inst Agric Sci 49:191–202

    Google Scholar 

  • Herridge D, Rose I (2000) Breeding for enhanced nitrogen fixation in crop legumes. Field Crops Res 65:229–248

    Article  Google Scholar 

  • Herridge DF, Turpin JE, Robertson MJ (2001) Improving nitrogen fixation of crop legumes through breeding and agronomic management: analysis with simulation modelling. Aust J Exp Agric 41:391–401

    Article  CAS  Google Scholar 

  • Howieson J, Ballard R (2004) Optimising the legume symbiosis in stressful and competitive environments within southern Australia — some contemporary thoughts. Soil Biol Biochem 36:1261–1273

    Article  CAS  Google Scholar 

  • Howieson J, Herridge DH (2005) Forward Aust J Agric Res 45

  • Italy ISplCF (2000a) Variety: ‘Antas’. Application no: 1999/147. Plant Var J 13:73

    Google Scholar 

  • Italy ISplCF (2000b) Trifolium subterraneum subsp Subterranean Clover brachycalycinum ‘Campeda’. Plant Var J 13:74

    Google Scholar 

  • Jenkinson DS (2001) The impact of humans on the nitrogen cycle, with focus on temperate arable agriculture. Plant Soil 228:3–15

    Article  CAS  Google Scholar 

  • Kiers ET, Hutton MG, Denison RF (2007) Human selection and the relaxation of legume defences against ineffective rhizobia. Proceedings of the Royal Society of London. Series B, Biological Sciences 274:3119–3126

    Article  CAS  Google Scholar 

  • Leung K, Strain SR, de Bruijn FJ et al (1994) Genotypic and phenotypic comparisons of chromosomal types within an indigenous soil population of Rhizobium leguminosarum bv. trifolii. Appl Environ Microbiol 60:416–426

    PubMed  CAS  Google Scholar 

  • Lewis-Henderson WR, Djordjevic MA (1991a) A cultivar-specific interaction between Rhizobium leguminosarum bv. trifolii and subterranean clover is controlled by nodM, other bacterial cultivar specificity genes, and a single recessive host gene. J Bacteriol 173:2791–2799

    PubMed  CAS  Google Scholar 

  • Lewis-Henderson WR, Djordjevic MA (1991b) nodT, a positively-acting cultivar specificity determinant controlling nodulation of Trifolium subterraneum by Rhizobium leguminosarum biovar trifolii. Plant Mol Biol 16:515–526

    Article  PubMed  CAS  Google Scholar 

  • McKnight T (1949) Efficiency of isolates of Rhizobium in the cowpea (Vigna unguiculata) group, with proposed additions to this group. Qd J Agric Sci 6:61–76

    Google Scholar 

  • Mitchell GJ, Oram RN (1992) Register of Australian herbage plant cultivars 1. Clover (d) Trifolium subterraneum L. var. yanninicum (Katz. et Morley) Zohary & Heller (subterranean clover) cv. Gosse. Aust J Exp Agric 32:545–546

    Article  Google Scholar 

  • Mytton LR (1984) Developing a breeding strategy to exploit quantitative variation in symbiotic nitrogen fixation. Plant Soil 82:329–335

    Article  CAS  Google Scholar 

  • Nandasena KG, O'Hara GW, Tiwari RP et al (2007) In situ lateral transfer of symbiosis islands results in rapid evolution of diverse competitive strains of mesorhizobia suboptimal in symbiotic nitrogen fixation on the pasture legume Biserrula pelecinus L. Environ Microbiol 9:2496–2511

    Article  PubMed  CAS  Google Scholar 

  • Nichols PGH, Nicholas DA, Dear BS et al (1995) Register of Australian herbage plant cultivars B. Legumes 1. Clover(d) Trifolium subterraneum L. var. subterraneum Heller (subterranean clover) cv. York. Aust J Exp Agric 35:821–822

    Article  Google Scholar 

  • Nichols PGH, Barbetti MJ, Evans PM et al (2006a) Napier subterranean clover (Trifolium subterraneum L. var. yanninicum). Aust J Exp Agric 46:1109–1112

    Article  Google Scholar 

  • Nichols PGH, Barbetti MJ, Sandral GA et al (2006b) Urana subterranean clover (Trifolium subterraneum L. var. subterraneum). Aust J Exp Agric 46:1105–1107

    Article  Google Scholar 

  • Nichols PGH, Barbetti MJ, Sandalio LM et al (2007) Coolamon subterranean clover (Trifolium subterraneum L. var. subterraneum). Aust J Exp Agric 47:223–225

    Article  Google Scholar 

  • Nutman PS (1984) Improving nitogen fixation in legumes by plant breeding; the relevance of host selction experiments in red clover (Trifolium pratense L.) and subterranean clover (T. subterraneum L.). Plant Soil 82:285–301

    Article  CAS  Google Scholar 

  • Oram RN (1990) Register of Australian Herbage Plant Cultivars Trifolium subterraneum var. brachycalycinum (Katz. et Morley) Zohary et Heller (subterranean clover) cv. Nuba. Aust J Exp Agric 30: 441

  • Oram RN (1992a) Register of Australian Herbage Plant Cultivars B. Legumes 1. Clover (d) Trifolium subterraneum L. var. subterraneum (Katz. et Morley) Zohary and Heller (subterranean clover) cv. Goulburn. Aust J Exp Agric 32:541–542

    Article  Google Scholar 

  • Oram RN (1992b) Register of Australian Herbage Plant Cultivars B. Legumes 1. Clover (d) Trifolium subterraneum L. var. subterraneum (Katz. et Morley) Zohary and Heller (subterranean clover) cv. Leura. Aust J Exp Agric 32:543–544

    Article  Google Scholar 

  • Oram RN (1992c) Register of Australian Herbage Plant Cultivars B. Legumes 1. Clover (d) Trifolium subterraneum L. var. subterraneum (Katz. et Morley) Zohary and Heller (subterranean clover) cv. Denmark. Aust J Exp Agric 32:539–540

    Article  Google Scholar 

  • Patel JJ, Lambert MG (1985) Symbiotic effectiveness of root nodule bacteria isolated from white clover growing in North Island hill pastures. N Z J Exp Agric 13:215–218

    Google Scholar 

  • Pecetti L, Piano E (2002) Variation of morphological and adaptive traits in subterranean clover populations from Sardinia (Italy). Genet Resour Crop Evol 49:189–197

    Article  Google Scholar 

  • Peoples MB, Baldock JA (2001) Nitrogen dynamics of pastures: nitrogen fixation inputs, the impact of legumes on soil nitrogen fertility, and the contributions of fixed nitrogen to Australian farming systems. Aust J Exp Agric 41:327–346

    Article  CAS  Google Scholar 

  • Peoples MB, Bowman AM, Gault RR et al (2001) Factors regulating the contributions of fixed nitrogen by pasture and crop legumes to different farming systems of eastern Australia. Plant Soil 228:29–41

    Article  CAS  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    Article  PubMed  CAS  Google Scholar 

  • Piano E, Pecetti L, Carroni AM (1997) Campeda, Limbara, Losa and Antas: the first Italian varieties of subterranean clover. Sementi Elette 43:31–36

    Google Scholar 

  • Quigley PE, Cunningham PJ, Hannah M et al (1997) Symbiotic effectiveness of Rhizobium leguminosarum bv. trifolii collected from pastures in south-western Victoria. Aust J Exp Agric 37:623–630

    Article  Google Scholar 

  • Rao JR, Jarvis BDW, Fenton M (1994) Symbiotic plasmid transfer in Rhizobium leguminosarum biovar trifolii and competition between the inoculant strain ICMP2163 and transconjugant soil bacteria. Soil Biol Biochem 26:339–351

    Article  CAS  Google Scholar 

  • Rossiter RC, Millington AJ (1961) Some characteristics of “Carnamah”, a very early-flowering strain of Trifolium subterraneum L., when grown as single plants. Aust J Agric Res 12:27–39

    Article  Google Scholar 

  • Rys GJ, Bonish PM (1981) Effectiveness of Rhizobium trifolii populations associated with Trifolium species in Taranaki, New Zealand. NZ J Exp Agric 9:329–335

    Google Scholar 

  • Simsek S, Ojanen-Reuhs T, Stephens SB et al (2007) Strain-ecotype specificity in Sinorhizobium meliloti-Medicago truncatula symbiosis is correlated to succinoglycan oligosaccharide structure. J Bacteriol 189:7733–7740

    Article  PubMed  CAS  Google Scholar 

  • Sitepu S (2001) Selection of Balansa clover lines using naturalised soil rhizobia. In Department of Applied and Molecular Ecology. p. 96. University of Adelaide, Adelaide

  • Slattery JF, Coventry DR (1993) Variation of soil populations of Rhizobium leguminosarum bv. trifolii and the occurrence of inoculant rhizobia in nodules of subterranean clover after pasture renovation in north-eastern Victoria. Soil Biol Biochem 25:1725–1730

    Article  Google Scholar 

  • Slattery JF, Coventry DR (1995) Acid-tolerance and symbiotic effectiveness of Rhizobium leguminosarum bv. trifolii isolated from subterranean clover growing in permanent pastures. Soil Biol Biochem 27:111–115

    Article  CAS  Google Scholar 

  • Somasegaran P, Hoben HJ (1994) Handbook for rhizobia: methods in legume-Rhizobium technology. pp. 450

  • Sullivan JT, Ronson CW (1998) Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci U S A 95:5145–5149

    Article  PubMed  CAS  Google Scholar 

  • Unkovich MJ, Pate JS, Armstrong EL et al (1995) Nitrogen economy of annual crop and pasture legumes in southwest Australia. Soil Biol Biochem 27:585–588

    Article  CAS  Google Scholar 

  • Unkovich MJ, Pate JS, Sanford P (1997) Nitrogen fixation by annual legumes in Australian Mediterranean agriculture. Aust J Agric Res 48:267–293

    Article  Google Scholar 

  • Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6861

    Article  PubMed  CAS  Google Scholar 

  • Versalovic J, Schneider M, deBruijn FJ et al (1994) Genomic fingerprinting o bacteria using repetitive sequence/based polymerase chain reaction. Meth in Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  • Vincent JM, Waters LM (1953) The influence of the host on competition amongst clover root-nodule bacteria. J Gen Micro 9:357–370

    CAS  Google Scholar 

  • Yates RJ, Howieson JG, Nandasena KG et al (2004) Root-nodule bacteria from indigenous legumes in the north-west of Western Australia and their interaction with exotic legumes. Soil Biol Biochem 36:1319–1329

    Article  CAS  Google Scholar 

  • Yates RJ, Howieson JG, Real D et al (2005) Evidence of selection for effective nodulation in the Trifolium spp. symbiosis with Rhizobium leguminosarum biovar trifolii. Aust J Exp Agric 45:189–198

    Article  Google Scholar 

  • Yates RJ, Howieson JG, Reeve WG et al (2008) Host-strain mediated selection for an effective nitrogen-fixing symbiosis between Trifolium spp. and Rhizobium leguminosarum biovar trifolii. Soil Biol Biochem 40:822–833

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out through the National Rhizobium Program which was jointly funded by GRDC (Grains Research and Development Institute) and AWI (Australian Wool Innovation). Seed was provided by the Plant Genetic Resource Centre at SARDI and Genetic Resource Centre for Temperate Pasture Legumes in Western Australia. The Authors wish to thank Mr Nigel Charman, Drs Phil Nichols and Klaus Oldach for helpful discussion and research advice, and Dr Murray Unkovich for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Drew.

Additional information

Responsible editor: Katharina Pawlowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drew, E.A., Ballard, R.A. Improving N2 fixation from the plant down: Compatibility of Trifolium subterraneum L. cultivars with soil rhizobia can influence symbiotic performance. Plant Soil 327, 261–277 (2010). https://doi.org/10.1007/s11104-009-0052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0052-8

Keywords

Navigation