Skip to main content
Log in

Mitochondrial iron metabolism in plants: frataxin comes into play

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Friedreich ataxia (FRDA), an autosomal recessive neurological dysfunction that severely impairs motor coordination and reduction of life expectancy in humans, is caused by a deficiency in frataxin, a nuclear-encoded mitochondrial protein. Recently, a frataxin ortholog has been identified in Arabidopsis thaliana, named AtFH, with a transit peptide for localization in mitochondria and 65% sequence identity with human frataxin (Busi et al. FEBS Lett 576:141–144, 2004). Complementation of S. cerevisiae mutant strain Δyfh1 deficient in frataxin with AtFH, proved that the plant isoform is a functional protein, able to restore normal respiration and growth rates in the mutant yeast (Busi et al. FEBS Lett 576:141–144, 2004). AtFH is localized in mitochondria as its animal counterparts (Busi et al. Plant J 48:873–882, 2006); it is expressed mainly in flowers and developing embryos and it is an essential protein, since the knocking out of AtFH gene causes arrest of embryo development at the globular stage (Vazzola et al. FEBS Lett 581:667–672, 2007). A T-DNA insertional A.thaliana mutant showing a greater than 50% reduction of AtFH protein content, named atfh-1, has impaired activity of two mitochondrial enzymes possessing [Fe-S] clusters: aconitase and succinate dehydrogenase (Busi et al. Plant J 48:873–882, 2006). The results obtained in the last ten years on animal systems can contribute, without any doubt, to the elucidation of the role of frataxin in plant mitochondria; however, mitochondria of photosynthetically active cells, differently from animal ones, are not the major source of Reactive Oxygen Species (ROS) which could suggest possible differences in function between plant and animal frataxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Download references

Acknowledgements

The authors are grateful to Dr. Diego Gomez-Casati for critical reading of the manuscript. Work was supported by MIUR (PRIN 2006, prot. Nr. 2006058818).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Murgia.

Additional information

Responsible Editor: Jian Feng Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murgia, I., Tarantino, D. & Soave, C. Mitochondrial iron metabolism in plants: frataxin comes into play. Plant Soil 325, 5–14 (2009). https://doi.org/10.1007/s11104-009-0038-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0038-6

Keywords

Navigation