Skip to main content
Log in

Rhizosphere alkalisation — a major driver of copper bioavailability over a broad pH range in an acidic, copper-contaminated soil

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The impact of a large rhizosphere alkalisation on copper (Cu) bioavailability to durum wheat (Triticum turgidum durum L.) initially exposed to a broad range of bulk soil pH (4.8–7.5) was studied. Plants were exposed to a Cu-contaminated soil treated with eight levels of lime (Ca(OH)2) and supplied with NO3 or NH4 +-NO3 . Nitrate-fed plants strongly increased their rhizosphere pH to about 6.9–7.6, whatever the initial pH. NH4 +-NO3 -fed plants slightly acidified their rhizosphere down to 3.9. Free Cu2+ concentration in the rhizosphere was 3 orders of magnitude larger for NH4 +-NO3 than NO3 fed plants. Consequently, Cu bioavailability was 2.4- to 4.2-fold larger for NH4 +−NO3 -fed plants which demonstrates the importance of rhizosphere alkalisation to restrict metal bioavailability in acidic soils. Copper bioavailability of NO3 -fed plants initially exposed to a broad range of bulk soil pH was insensitive to bulk soil pH, as rhizosphere pH was ultimately neutral in any case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AFNOR (1999) Recueil de normes françaises. Qualité des sols, Paris

    Google Scholar 

  • Bagayoko M, Alvey S, Neumann G, Buerkert A (2000) Root-induced increases in soil pH and nutrient availability to field-grown cereals and legumes on acid sandy soils of Sudano-Sahelien West Africa. Plant Soil 225:117–127 doi:10.1023/A:1026570406777

    Article  CAS  Google Scholar 

  • Bravin MN (2008) Processus rhizosphériques déterminant la biodisponibilité du cuivre pour le blé dur cultivé en sols à antécédent viticole. PhD Thesis, Montpellier SupAgro. Electronic version available through the corresponding author

  • Britto DT, Kronzucker HJ (2002) NH4 + toxicity in higher plants: a critical review. J Plant Physiol 159:567–584 doi:10.1078/0176-1617-0774

    Article  CAS  Google Scholar 

  • Carrillo-Gonzalez R, Simunek J, Sauvé S, Adriano D (2006) Mechanisms and pathways of trace element mobility in soils. Adv Agron 91:111–178 doi:10.1016/S0065-2113(06)91003-7

    Article  CAS  Google Scholar 

  • Cattani I, Fragoulis G, Boccelli R, Capri E (2006) Copper bioavailability in the rhizosphere of maize (Zea mays L.) grown in two Italian soils. Chemosphere 64:1972–1979 doi:10.1016/j.chemosphere.2006.01.007

    Article  PubMed  CAS  Google Scholar 

  • Chaignon V, Hinsinger P (2003) A biotest for evaluating copper bioavailability to plants in a contaminated soil. J Environ Qual 32:824–833

    PubMed  CAS  Google Scholar 

  • Chaignon V, Bedin F, Hinsinger P (2002) Copper bioavailability and rhizosphere pH changes as affected by nitrogen supply for tomato and oil seed rape cropped on an acidic and a calcareous soil. Plant Soil 243:219–228 doi:10.1023/A:1019942924985

    Article  CAS  Google Scholar 

  • Chaignon V, Quesnoit M, Hinsinger P (2008) Rhizosphere pH, bioavailability and extractability of Cu in an acidic Cu-contaminated soil as affected by liming. Environ Pollut (submitted)

  • Cheng Y, Howieson JG, O’Hara GW, Watkin ELJ, Souche G, Jaillard B, Hinsinger P (2004) Proton release by roots of Medicago murex and Medicago sativa growing in acidic conditions, and implications for rhizosphere pH changes and nodulation at low pH. Soil Biol Biochem 36:1357–1365 doi:10.1016/j.soilbio.2004.04.017

    Article  CAS  Google Scholar 

  • Cornu JY, Denaix L (2006) Prediction of zinc and cadmium phytoavailability within a contaminated agricultural site using DGT. Environ Chem 3:61–64 doi:10.1071/EN05050

    Article  CAS  Google Scholar 

  • Cornu JY, Staunton S, Hinsinger P (2007) Copper concentration in plants and in the rhizosphere as influenced by the iron status of tomato (Lycopersicum esculentum L.). Plant Soil 292:63–77 doi:10.1007/s11104-007-9202-z

    Article  CAS  Google Scholar 

  • Costigan PA, Rose JA, McBurney T (1982) A microcomputer based method for the rapid and detailed measurement of seedling root systems. Plant Soil 69:305–309 doi:10.1007/BF02374528

    Article  Google Scholar 

  • Degenhardt J, Larsen PB, Howell SH, Kochian LV (1998) Aluminium resistance in the Arabidopsis mutant alr-104 is caused by an aluminium-induced increase in rhizosphere pH. Plant Physiol 117:19–27 doi:10.1104/pp.117.1.19

    Article  PubMed  CAS  Google Scholar 

  • Degryse F, Smolders E, Parker DR (2006) Metal complexes increase uptake of Zn and Cu by plants: implications for uptake and deficiency studies in chelator-buffered solutions. Plant Soil 289:171–185 doi:10.1007/s11104-006-9121-4

    Article  CAS  Google Scholar 

  • Degryse F, Verma VK, Smolders E (2008) Mobilization of Cu and Zn by root exudates of dicotyledonous plants in resin-buffered solutions and in soil. Plant Soil 306:69–84 doi:10.1007/s11104-007-9449-4

    Article  CAS  Google Scholar 

  • Haynes RJ (1990) Active ion uptake and maintenance of cation-anion balance: a critical examination of their role in regulating rhizosphere pH. Plant Soil 126:247–264 doi:10.1007/BF00012828

    Article  CAS  Google Scholar 

  • Hinsinger P, Courchesne F (2008) Biogeochemistry of metals and metalloids at the soil-root interface. In: Violante A, Huang PM, Gadd GM (eds) Biophysic-chemical processes of heavy metals and metalloids in soil environments. Wiley & Sons, Hoboken, USA, pp 267–311

    Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59 doi:10.1023/A:1022371130939

    Article  CAS  Google Scholar 

  • Huang JW, Chen J (2003) Role of pH in phytoremediation of contaminated soils. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker, New York, pp 449–472

    Google Scholar 

  • ISO (1999) Soil quality. Guidance on the ecotoxicological characterisation of soils and soil materials. ISO/DIS 15799 Geneva, Switzerland

    Google Scholar 

  • Jarvis SC, Robson AD (1983) The effects of nitrogen nutrition of plants on the development of acidity in western Australian soils. II. Effects of differences in cation/anion balance between plant species grown under non-leaching conditions. Aust J Agric Res 34:355–365 doi:10.1071/AR9830355

    Article  CAS  Google Scholar 

  • Khalid M, Soleman N, Jones DL (2007) Grassland plants affect dissolved organic carbon and nitrogen dynamics in soil. Soil Biol Biochem 39:378–381 doi:10.1016/j.soilbio.2006.07.007

    Article  CAS  Google Scholar 

  • Kinraide TB, Ryan PR, Kochian LV (1992) Interactive effects of Al3+, H+, and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol 99:1461–1468

    Article  PubMed  CAS  Google Scholar 

  • Lebourg A, Sterckmann T, Ciesielski H, Proix N (1998) Trace metal speciation in three unbuffered salt solutions used to assess their bioavailability. J Environ Qual 27:584–590

    CAS  Google Scholar 

  • Lexmond TM (1980) The effect of soil pH on copper toxicity to forage maize grown under field conditions. Neth J Agric Sci 28:164–183

    CAS  Google Scholar 

  • Lexmond TM, van der Vorm PDJ (1981) The effect of pH on copper toxicity to hydroponically grown maize. Neth J Agric Sci 29:217–238

    CAS  Google Scholar 

  • Lofts S, Spurgeon DJ, Svendsen C, Tipping E (2004) Deriving soil critical limits for Cu, Zn, Cd and Pb: a method based on free ion concentrations. Environ Sci Technol 38:3623–3631 doi:10.1021/es030155h

    Article  PubMed  CAS  Google Scholar 

  • Loosemore N, Straczek A, Hinsinger P, Jaillard B (2004) Zinc mobilisation from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH. Plant Soil 260:19–32 doi:10.1023/B:PLSO.0000030173.71500.e1

    Article  CAS  Google Scholar 

  • Ma YB, Lombi E, Oliver IW, Nolan AL, McLaughlin MJ (2006) Long-term aging of copper added to soils. Environ Sci Technol 40:6310–6317 doi:10.1021/es060306r

    Article  PubMed  CAS  Google Scholar 

  • McBride MB, Blasiak JJ (1979) Zinc and copper solubility as a function of pH in an acid soil. Soil Sci Soc Am J 43:866–870

    CAS  Google Scholar 

  • Michaud AM, Bravin MN, Galleguillos M, Hinsinger P (2007) Copper uptake and phytotoxicity as assessed in situ for durum wheat (Triticum turgidum durum L.) cultivated in Cu-contaminated, former vineyard soils. Plant Soil 298:99–111 doi:10.1007/s11104-007-9343-0

    Article  CAS  Google Scholar 

  • Miller AJ, Cramer MD (2004) Root nitrogen acquisition and assimilation. Plant Soil 274:1–36 doi:10.1007/s11104-004-0965-1

    Article  CAS  Google Scholar 

  • Mullins GL, Sommers LE (1986) Cadmium and zinc influx characteristics by intact corn (Zea mays L.) seedlings. Plant Soil 96:153–164 doi:10.1007/BF02374760

    Article  CAS  Google Scholar 

  • Oste LA, Temminghoff EJM, Van Riemsdijk WH (2002) Solid-solution partitioning of organic matter in soils as influenced by an increase in pH and Ca concentration. Environ Sci Technol 36:208–214 doi:10.1021/es0100571

    Article  PubMed  CAS  Google Scholar 

  • Parker DR, Pedler JF, Thomason DN, Li H (1998) Alleviation of copper rhizotoxicity by calcium and magnesium at defined free metal-ion activities. Soil Sci Soc Am J 62:965–972

    CAS  Google Scholar 

  • Rachou J, Hendershot W, Sauvé S (2004) Effects of pH on fluxes of cadmium in soils measured by using diffusive gradients in thin films. Commun Soil Sci Plant Anal 35:2655–2673 doi:10.1081/CSS-200030438

    Article  CAS  Google Scholar 

  • Riley D, Barber SA (1971) Effect of ammonium and nitrate fertilization on phosphorus uptake as related to root-induced pH changes at the root-soil interface. Soil Sci Soc Am Proc 35:301–306

    Article  CAS  Google Scholar 

  • Ritsema CJ (1993) Estimation of activity coefficients of individual ions in solutions with ionic strengths up to 0.3 mol dm−3. J Soil Sci 44:307–315

    CAS  Google Scholar 

  • Salam AK, Helmke PA (1998) The pH dependence of free ionic activities and total dissolved concentrations of copper and cadmium in soil solution. Geoderma 83:281–291 doi:10.1016/S0016-7061(98)00004-4

    Article  CAS  Google Scholar 

  • Sauvé S, Dumestre A, McBride M, Hendershot W (1998) Derivation of soil quality criteria using predicted chemical speciation of Pb2+ and Cu2+. Environ Toxicol Chem 17:1481–1489 doi:10.1897/1551-5028(1998)017<1481:DOSQCU>2.3.CO;2

    Article  Google Scholar 

  • Sauvé S, Hendershot W, Allen HE (2000) Solid-solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34:1125–1131 doi:10.1021/es9907764

    Article  CAS  Google Scholar 

  • Taylor GJ, Foy CD (1985) Mechanisms of aluminium tolerance in Triticum aestivum (wheat). IV. The role of ammonium and nitrate nutrition. Can J Bot 63:2181–2186

    Article  CAS  Google Scholar 

  • Thakali S, Allen HE, Di Toro DM, Ponizovsky AA, Rooney CP, Zhao FJ, McGrath SP (2006) A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils. Environ Sci Technol 40:7085–7093 doi:10.1021/es061171s

    Article  PubMed  CAS  Google Scholar 

  • Tyler G, Olsson T (2001) Concentrations of 60 elements in the soil solution as related to the soil acidity. Eur J Soil Sci 52:151–165 doi:10.1046/j.1365-2389.2001.t01-1-00360.x

    Article  CAS  Google Scholar 

  • Youssef RA, Chino M (1989) Root-induced changes in the rhizosphere of plants. I. pH changes in relation to bulk soil. Soil Sci Plant Nutr 35:461–468

    Google Scholar 

  • Zhang H, Lombi E, Smolders E, McGrath S (2004) Kinetics of Zn release in soils and prediction of Zn concentration in plants using diffusive gradients in thin. Environ Sci Technol 38:3608–3613 doi:10.1021/es0352597

    Article  PubMed  CAS  Google Scholar 

  • Zhao FJ, Rooney CP, Zhang H, McGrath SP (2006) Comparison of soil solution speciation and diffusive gradients in thin-films measurement as an indicator of copper bioavailability to plants. Environ Toxicol Chem 25:733–742 doi:10.1897/04-603R.1

    Article  PubMed  CAS  Google Scholar 

  • Zhao LYL, Schulin R, Nowack B (2007) The effects of plants on the mobilization of Cu and Zn in soil columns. Environ Sci Technol 41:2770–2775 doi:10.1021/es062032d

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Edith Le Cadre-Barthélémy is acknowledged for her advices for estimating soil pH buffering capacity. Nicole Balsera, Joëlle Toucet-Louri and Bruno Buatois are also thanked for technical support. Pierre Berthomieu is acknowledged for providing free access to F-AAS. Financial support was provided by the PNETOX programme of the French Ministry of Ecology and Sustainable Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hinsinger.

Additional information

Responsible Editor: Robert Reid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bravin, M.N., Martí, A.L., Clairotte, M. et al. Rhizosphere alkalisation — a major driver of copper bioavailability over a broad pH range in an acidic, copper-contaminated soil. Plant Soil 318, 257–268 (2009). https://doi.org/10.1007/s11104-008-9835-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9835-6

Keywords

Navigation