Skip to main content
Log in

Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Contamination of agricultural topsoils with Cd above guideline values is of concern in many countries throughout the world. Extraction of metals from contaminated soils using high-biomass, metal-accumulating Salix sp. has been proposed as a low-cost, gentle remediation strategy, but reasonable phytoextraction rates remain to be demonstrated. In an outdoor pot experiment we assessed the phytoextraction potential for Cd and Zn of four willow species (Salix caprea, S. fragilis, S. × smithiana, S. × dasyclados) and intercropping of S. caprea with the hyperaccumulator Arabidopsis halleri on three moderately contaminated, agricultural soils. Large concentrations of Cd (250 mg kg−1) and Zn (3,300 mg kg−1) were determined in leaves of Salix × smithiana grown on a soil containing 13.4 mg kg−1 Cd and 955 mg kg−1 Zn, resulting in bioaccumulation factors of 27 (Cd) and 3 (Zn). Total removal of up to 20% Cd and 5% Zn after three vegetation periods were shown for Salix × smithiana closely followed by S. caprea, S. fragilis and S. × dasyclados. While total Cd concentrations in soils were reduced by up to 20%, 1 M NH4NO3-extractable metal concentrations did not significantly decrease within 3 years. Intercropping of S. caprea and A. halleri partly increased total removal of Zn, but did not enhance total Cd extraction compared to single plantings of S. caprea after two vegetation periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G, Vangronsveld J (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, pp 85–107

    Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB international Wallingford

  • Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390

    Article  PubMed  CAS  Google Scholar 

  • Dos Santos Utmazian MN, Wenzel WW (2007) Cadmium and zinc accumulation in willow and poplar species grown on polluted soils. J Plant Nutr Soil Sci 170:265–272

    Article  CAS  Google Scholar 

  • Dos Santos Utmazian MN, Wieshammer G, Vega R, Wenzel WW (2007) Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environ Pollut 148:155–165

    Article  PubMed  CAS  Google Scholar 

  • Felix H (1997) Field trials for in situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants. J Plant Nutr Soil Sci 160:525–529

    Article  CAS  Google Scholar 

  • Fischerová Z, Tlustoš P, Száková J, Šicherorová K (2006) A comparison of phytoremediation capability of selected plant species for given trace elements. Environ Pollut 144:93–100

    Article  PubMed  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW, Zhang H, Nurmi J, Stipek K, Fischerova Z, Schweiger P, Köllersperger G, Ma LQ, Stingeder G (2003) Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency. Environ Sci Technol 37:5008–5014

    Article  PubMed  CAS  Google Scholar 

  • Gove B, Hutchinson JJ, Young SD, Craigon J, McGrath SP (2002) Uptake of metals by plants sharing a rhizosphere with the hyperaccumualator Thlaspi caerulescens. Int J Phytoremediat 4:267–281

    Article  CAS  Google Scholar 

  • Granel T, Robinson B, Mills T, Clothier B, Green S, Fung L (2002) Cadmium accumulation by willow clones used for soil conservation, stock fodder and phytoremediation. Aust J Soil Res 40:1331–1337

    Article  CAS  Google Scholar 

  • Hammer D, Kayser A, Keller C (2003) Phytoextraction of Cd and Zn with S. viminalis in field trials. Soil Use Manage 19:187–192

    Google Scholar 

  • Kayser A, Wenger K, Keller W, Attinger W, Felix HR, Gupta SK, Schulin R (2000) Enhancement of phytoextraction of Zn, Cd and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ Sci Technol 34:1778–1783

    Article  CAS  Google Scholar 

  • Keller C, Hammer D, Kayser A, Richner W, Brodbeck M, Sennhauser M (2003) Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field. Plant Soil 249:67–81

    Article  CAS  Google Scholar 

  • Klang-Westin E, Perttu K (2002) Effect of nutrient supply and soil cadmium concentration on cadmium removal by willow. Biomass Bioenergy 23:415–426

    Article  CAS  Google Scholar 

  • Klang-Westin E, Eriksson J (2003) Potential of Salix as phytoextractor for Cd on moderately contaminated soils. Plant Soil 249:127–137

    Article  CAS  Google Scholar 

  • Küpper H, Lombi E, Zhao F, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    Article  PubMed  Google Scholar 

  • Landberg T, Greger M (1996) Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Appl Geochem 11:175–180

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214

    Article  CAS  Google Scholar 

  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125

    Article  PubMed  CAS  Google Scholar 

  • Menzies NW, Donn MJ, Kopittke PM (2007) Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environ Pollut 145:121–130

    Article  PubMed  CAS  Google Scholar 

  • ÖNORM L 1075 (2003) Österreichisches Normungsinstitut, Grundlagen für die Bewertung der Gehalte ausgewählter Elemente in Böden

  • ÖNORM L 1085 (1999) Österreichisches Normungsinstitut, Chemische Bodenuntersuchungen. Säureextrakt zur Bestimmung von Nähr- und Schadelementen

  • ÖNORM L 1094 (1999) Österreichisches Normungsinstitut. Chemische Bodenuntersuchungen. Extraktion von Spurenelementen mit Ammoniumnitratlösung

  • Pulford ID, Watson C (2002) Phytoremediation of heavy metal-contaminated land by trees – a review. Environ Int 29:529–540

    Article  CAS  Google Scholar 

  • Pulford ID, Dickinson NM (2005) Phytoremediation technologies using trees. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment. Taylor and Francis, Boca Raton, pp 375–395

    Google Scholar 

  • Riddell-Black D, Pulford ID, Stewart C (1997) Clonal variation of heavy metal uptake by willow. Asp Appl Biol 49:327–334

    Google Scholar 

  • Rosselli W, Keller C, Boschi K (2003) Phytoextraction capacity of trees growing on a metal contaminated soil. Plant Soil 256:265–272

    Article  CAS  Google Scholar 

  • Vandecasteele B, Meers E, Vervaeke P, De Vos B, Quataert P, Tack FMG (2005) Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere 58:995–1002

    Article  PubMed  CAS  Google Scholar 

  • Vervaeke P, Luyssaert S, Mertens J, Meers E, Tack FMG, Lust N (2003) Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environ Pollut 126:275–282

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider P, Günthardt-Goerg MS (2005) Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ Pollut 137:455–465

    Article  PubMed  CAS  Google Scholar 

  • Vyslouzilová M, Tlustoš P, Száková J, Pavlíková D (2003) As, Cd, Pb and Zn uptake by Salix ssp. clones grown in soils enriched by high loads of these elements. Plant Soil Environ 49:191–196

    Google Scholar 

  • Vyslouzilová M, Puschenreiter M, Wieshammer G, Wenzel WW (2006) Rhizosphere chracteristics, heavy metal accumulation and growth performance of two willow (Salix × rubens) clones. Plant Soil Environ 52:353–361

    Google Scholar 

Download references

Acknowledgments

We acknowledge financial support for this study by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management (INTERLAND-Project Package 3). We thank two anonymous reviewers for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Puschenreiter.

Additional information

Responsible Editor: Fangjie J. Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wieshammer, G., Unterbrunner, R., García, T.B. et al. Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri . Plant Soil 298, 255–264 (2007). https://doi.org/10.1007/s11104-007-9363-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-007-9363-9

Keywords

Navigation