Skip to main content

Advertisement

Log in

Dinitrogen-fixation by three neotropical agroforestry tree species under semi-controlled field conditions

  • Original Paper
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Cultivating dinitrogen-fixing legume trees with crops in agroforestry is a relatively common N management practice in the Neotropics. The objective of this study was to assess the N2 fixation potential of three important Neotropical agroforestry tree species, Erythrina poeppigiana, Erythrina fusca, and Inga edulis, under semi-controlled field conditions. The study was conducted in the humid tropical climate of the Caribbean coastal plain of Costa Rica. In 2002, seedlings of I. edulis and Vochysia guatemalensis were planted in one-meter-deep open-ended plastic cylinders buried in soil within hedgerows of the same species. Overall tree spacing was 1 × 4 m to simulate a typical alley-cropping design. The 15N was applied as (NH4)2SO4 at 10% 15N atom excess 15 days after planting at the rate of 20 kg [N] ha−1. In 2003, seedlings of E. poeppigiana, E. fusca, and V. guatemalensis were planted in the same field using the existing cylinders. The 15N application was repeated at the rate of 20 kg [N] ha−1 15 days after planting and 10 kg [N] ha−1 was added three months after planting. Trees were harvested 9 months after planting in both years. The 15N content of leaves, branches, stems, and roots was determined by mass spectrometry. The percentage of atmospheric N fixed out of total N (%Nf) was calculated based on 15N atom excess in leaves or total biomass. The difference between the two calculation methods was insignificant for all species. Sixty percent of I. edulis trees fixed N2; %Nf was 57% for the N2-fixing trees. Biomass production and N yield were similar in N2-fixing and non-N2-fixing I. edulis. No obvious cause was found for why not all I. edulis trees fixed N2. All E. poeppigiana and E. fusca trees fixed N2; %Nf was ca. 59% and 64%, respectively. These data were extrapolated to typical agroforestry systems using published data on N recycling by the studied species. Inga edulis may recycle ca. 100 kg ha−1 a−1 of N fixed from atmosphere to soil if only 60% of trees fix N2, E. poeppigiana 60–160 kg ha−1 a−1, and E. fusca ca. 80 kg ha−1 a−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abaidoo RC, Dashiell KE, Sanginga N, Keyser HH, Singleton PW (1999) Timecourse of Dinitrogen fixation of promiscuous soybeans cultivars measured by the isotope dilution method. Biol fert soils 30(3):187–192

    Article  CAS  Google Scholar 

  • Arrendell S, Wynne JC, Elkan GH, Schneeweis TJ (1986) Bidirectional selection for nitrogen activity and shoot dry weight among late generation progenies of Virginia x Spanish peanut cross. Peanut Sci 13(2):86–89

    Article  CAS  Google Scholar 

  • Baker DD, Wheeler RA, Fried M (1990) Estimation of biological dinitrogen fixation by 15N-dilution in tree plantations. 1. Sampling strategies and first harvest results for three legumes species. p 24–28. In Fourth meeting African association for biological nitrogen fixation. International Institute of Tropical agriculture. Ibadan, Nigeria

  • Beer J (1988) Litter production and nutrient cycling in coffee (Coffea arabica) and cacao (Theobroma cacao) plantations with shade trees. Agrofor Syst 7:103–114

    Article  Google Scholar 

  • Beer J, Bonnemann A, Chávez W, Fassbender HW, Imbach AC, Martel I (1990) Modelling agroforestry systems of cacao (Theobroma cacao) with laurel (Cordia alliodora) or poro (Erythrina poeppigiana) in Costa Rica. V. Productivity indices, organic material models and sustainability over ten years. Agrofor Syst 12:229–249

    Article  Google Scholar 

  • Beer J, Muschler R, Kass D, Somarriba E (1998) Shade management in coffee and cacao plantations. Agrofor Syst 38:139–164

    Article  Google Scholar 

  • Bertsch F (1987) Manual para interpretar la fertilidad de los suelos de Costa Rica. Universidad de Costa Rica, Escuela de Fitotecnia, San José, Costa Rica 78 p

    Google Scholar 

  • Bolaños RA, Watson VC (1993) Mapa ecológico de Costa Rica, según el sistema de clasificación de zonas de vida del mundo de L.R Holdrige. Centro Científico Tropical, Costa Rica

    Google Scholar 

  • Brockwell J, Holliday RA, Daoud DM, Materon LA (1988) Symbiotic characterization of a Rhizobium specific annual Medicago rigula L. Soil Biol Biochem 20(5):593–600

    Article  Google Scholar 

  • Budowski G, Kass DCL, Russo RO (1984) Leguminous trees for shade. Pesq Agropec Bras 19(edição especial):205–222

    Google Scholar 

  • Chalk PM, Ladha JK (1999) Estimation of legume symbiotic dependence: an evaluation of techniques based on 15N dilution. Soil Biol Biochem 31:1901–1917

    Article  CAS  Google Scholar 

  • Dulormne M, Sierra J, Nygren P, Cruz P (2003) Nitrogen-fixation dynamics in a cut-and-carry silvopastoral system in the subhumid conditions of Guadeloupe, French Antilles. Agrofor Syst 59:121–129

    Article  Google Scholar 

  • Escalante G, Herrera R, Aranguren J (1984) Fijación de nitrógeno en árboles de sombra (Erythrina poeppigiana) en cacaotales del norte de Venezuela. Pesq Agropec Bras 19(edição especial):223–230

    Google Scholar 

  • Fassbender HW (1987) Nutrient cycling in agroforestry systems of coffee (Coffea arabica) with shade trees in the Central Experiment of CATIE. In: Beer JW, Fassbender HW, Heuvoldop J (eds) Advances in agroforestry research. CATIE, Turrialba, Costa Rica, pp 155–165

  • Fried M, Middelboe V (1977) Measurement of amount of nitrogen fixed by a legume crop. Plant Soil 47:713–715

    Article  CAS  Google Scholar 

  • Galiana A, Gnahoua, GM, Chaumot J, Lesueur D, Prin Y, Mallet B (1998) Improvement of nitrogen fixation in Acacia mangium through inoculation with rhizobium. Agroforestry Syst 40:297–307

    Article  Google Scholar 

  • Haggar JP, Tanner EJV, Beer JW, Kass DCL (1993) Nitrogen dynamics of tropical agroforestry and annual cropping systems. Soil Biol Biochem 25:1363–1378

    Article  CAS  Google Scholar 

  • Hairiah K, Van Noordwijk M, Cadisch G (2000) Quantification of biological N2 fixation of hedgerow trees in Northern Lampung. Netherland J Agric Sci 48:47–59

    CAS  Google Scholar 

  • Hands MR (1998) The use of Inga in the acid soils of the rainforest zone: alley-cropping sustainability and soil-regeneration. In: Pennington TD, Fernandez ECM (eds) The Genus Inga Utilization. The Royal Botanic Gardens Kew, London England, pp 53–86

    Google Scholar 

  • Hauser S (1993) Root distribution of Dactyladenia (Acioa) barteri and Senna (Cassia) siamea in alley cropping on Ultisol. I. Implications for field experimentation. Agrofor Syst 24:111–121

    Article  Google Scholar 

  • Hauser S, Gichuru MP (1994) Root distribution of Dactyladenia (Acioa) barteri and Senna (Cassia) siamea in alley cropping on Ultisol. II. Imppact on water regime and consequences for experimental design. Agrofor Syst 26: 9–21

    Article  Google Scholar 

  • Heuveldop J, Fassbender HW, Alpízar L, Enríquez G, Fölster H (1988) Modelling agroforestry systems of cacao (Theobroma cacao) with laurel (Cordia alliodora) or poro (Erythrina poeppigiana) in Costa Rica. II. Cacao and wood production, litter production and decomposition. Agrofor Syst 6:37–48

    Google Scholar 

  • Izaguirre Mayoral ML, Sinclair TR (2005) Soybean genotypic difference in growth, nutrient accumulation and ultrastructure in response to manganese and iron supply in solution culture. Ann Bot 96:149–158

    Article  PubMed  CAS  Google Scholar 

  • Kadiata BD, Mulongoy K, Isirimah NO (1998) Effect of tree pruning and pruning application to trees on nitrogen fixation by Leucaena and Gliricidia. Agroforestry Syst 39:117–128

    Article  Google Scholar 

  • Kass DCL, Sylvester-Bradley R, Nygren P (1997) The role of nitrogen fixation and nutrient supply in some agroforestry systems of the Americas. Soil Biol Biochem 29:775–785

    Article  CAS  Google Scholar 

  • Koponen P, Nygren P, Domenach AM, Le Roux C, Saur E, Roggy JC (2003) Nodulation and dinitrogen fixation of legume trees in a tropical freshwater swamp forest in French Guiana. J Trop Ecol 19:655–666

    Article  Google Scholar 

  • Ladha JK, Peoples MB, Garrity DP, Capuno VT, Dart PJ (1993) Estimating dinitrogen fixation of hedgerow vegetation using the nitrogen-15 natural abundance method. Soil Sci Soc Am J 57:732–737

    Article  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1629

    Article  PubMed  CAS  Google Scholar 

  • Lawrence A, Pennington TD, Hands MR, Zúniga RA (1995) Inga: High diversity in the neotropics. In: Evans DO, Szott LT (eds) Nitrogen fixing trees for acid soils. Nitrogen Fixing Tree Research Reports, Special Issue 1995, pp 130–141

  • Leblanc HA, McGraw RL (2006) Evaluation of Inga edulis and Inga samanensis for Firewood and Green-Mulch Production in an Organic Corn Alley-Cropping Practice in the Humid Tropics.Trop Agric, in press

  • Leblanc HA, McGraw RL, Nygren P, Le Roux C (2005) Neotropical legume tree Inga edulis forms N2-fixing symbiosis with fast-growing Bradyrhizobium strains. Plant Soil 275:123–133

    Article  CAS  Google Scholar 

  • León J (1998) Inga as shade tree for coffee, cacao and tea: historical aspects and present day utilization. In: Pennington TD, Fernandez ECM (eds) The Genus Inga Utilization. The Royal Botanic Gardens Kew, London, England, pp 101–115

    Google Scholar 

  • Lindblad P, Russo R (1986) C2H2-reduction by Erythrina poeppigiana in a Costa Rican coffee plantation. Agrofor Syst 4:33–37

    Article  Google Scholar 

  • Liyanage MS, de Danso SKA, Jayasundara HPS (1994) Biological nitrogen fixation in four Gliricidia sepium genotypes. Plant Soil 161:267–274

    Article  Google Scholar 

  • Mariotti A (1984) Natural 15N abundance measurements and atmospheric nitrogen standard calibration. Nature 311:251–252

    Article  CAS  Google Scholar 

  • Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell W, Robertson GP, Santos OC, Treseder K (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65

    CAS  Google Scholar 

  • Mazzarino MJ, Szott L, Jiménez M (1993) Dynamics of soil total C and N, microbial biomass, and water-soluble C in tropical agroecosystems. Soil Biol Biochem. 25:205–214

    Article  CAS  Google Scholar 

  • Minchin FR, Sheehy JE, Witty JF (1986) Further errors in the acetylene reduction assay. Effects of plan disturbance. J Exp Bot 37:1581–1591

    Article  CAS  Google Scholar 

  • Minchin FR, Witty JF, Sheehy JE, Müller M (1983) A major error in the acetylene reduction assay: dreceases in nodular nitrogenase activity under assay conditions. J Exp Bot 34:641–649

    Article  CAS  Google Scholar 

  • Neill DA (1993) The genus Erythrina: taxonomy, distribution and ecological differentiation. In: Westley SB, Powell MH (eds) Erythrina in the new and old worlds. Nitrogen Fixing Tree Research Reports, Special Issue, pp 15–27

  • Nygren P, Cruz P, Domenach AM, Vaillant V, Sierra J (2000) Influence of forage harvesting regimes on dynamics of biological dinitrogen fixation of a tropical woody legume. Tree Physiol 20:41–48

    PubMed  Google Scholar 

  • Nygren P, Ramírez C (1995) Production and turnover of N2 fixing nodules in relation to foliage development in periodically pruned Erythrina poeppigiana (Leguminosae) trees. For Ecol Manage 73:59–73

    Article  Google Scholar 

  • Peoples MB, Palmer B, Lilley DM, Duc LM, Herridge DF (1996) Application of 15N and xylem ureide methods for assessing N2 fixation of three shrub legumes periodically pruned for forage. Plant Soil 182:125–137

    Article  CAS  Google Scholar 

  • Pérez Castellon EE (1990) Evaluación del ensayo clonal de Erythrina spp. en San Juan Sur, Turrialba, Costa Rica. M.Sc. thesis, CATIE, Turrialba, Costa Rica

  • Purcino HMA, Festin PM, Elkan GH (2000) Identification of effective strains of Bradyrhizobium for Arachis pintoi. Trop Agric 77(4):226–231

    Google Scholar 

  • Ramírez LG (1993) Producción de café (Coffea arabica) bajo diferentes niveles de fertilización con y sin sombra de Erythrina poeppigiana (Walpers) O.F. Cook. In: Westley SB, Powell MH (eds) Erythrina in the new and old worlds. Nitrogen Fixing Tree Research Reports, Special Issue, pp 121–124

  • Roggy JC, Prévost MF, Gourbière F, Casabianca H, Garbaye J, Domenach AM (1999) Leaf natural 15N abundance and N concentration as potential indicators of plant N nutrition in legumes and pioneer species in a rain forest of French Guiana. Oecologia 120:171–182

    Article  Google Scholar 

  • Roskoski JP (1982) Nitrogen fixation in a Mexican coffee plantation. Plant Soil 67:283–291

    Article  CAS  Google Scholar 

  • Roskoski JP, Van Kessel C (1985) Annual, seasonal and field variation in nitrogen fixing activity by Inga jinicuil, a tropical legume tree. Oikos 44:306–312

    Article  Google Scholar 

  • Russo RO, Budowski G (1986) Effect of pollarding frequency on biomass of Erythrina poeppigiana as a coffee shade tree. Agrofor Syst 4:145–162

    Article  Google Scholar 

  • Sánchez JF (1989) Análisis de la estabilidad y dinámica de sistemas de producción de cultivos en callejones. M.Sc. thesis, CATIE, Turrialba, Costa Rica

  • Sánchez JF, Moreno RA, Muñoz F (1993) Erythrina fusca: un árbol leguminoso de la costa norte de Colombia con potencial agroforestal. In: Westley SB, Powell MH (eds) Erythrina in the new and old worlds. Nitrogen Fixing Tree Research Reports, Special Issue, pp 55–61

  • Sanginga N, Vanlauwe B, Danso SKA (1995) Management of biological N2 fixation in alley cropping systems: estimation and contribution to N balance. Plant Soil 174:119–141

    Article  CAS  Google Scholar 

  • Santana MBM, Rosand PC (1985) Reciclagem de nutrientes em uma plantação de cacau sombreada com eritrina. In Proceedings of the IX International Cocoa Research Conference, Togo 1984. Cocoa Producers’ Alliance, Lagos, Nigeria, pp 205–210

  • Sierra J, Nygren P (2006) Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system. Soil Biol Biochem 38: 1893–1903

    Article  CAS  Google Scholar 

  • Sierra J, Dulormne M, Desfontaines L (2002) Soil nitrogen as affected by Gliricidia sepium in a silvopastoral system in Guadeloupe, French Antilles. Agrofor Syst 54:87–97

    Article  Google Scholar 

  • Ståhl L, Nyberg G, Högberg P, Buresh RL (2002) Effects of planted tree fallows on soil nitrogen dynamics above-ground and root biomass, N2-fixation and subsequent maize crop productivity in Kenya. Plant Soil 243:103–117

    Article  Google Scholar 

  • Ståhl L, Högberg P, Sellstedt A, Buresh RJ (2005) Measuring nitrogen fixation by Sesbania sesban planted in fallows using 15N tracer technique in Kenya. Agrofor Syst 65:67–79

    Article  Google Scholar 

  • Sylvester-Bradley R, Mosquera D, Asakawa NM, Sanchez G (1991) Promiscuity and responses to rhizobial inoculation of tropical kudsu (Pueraria phaseoloides). Field Crops Res 27:267–279

    Article  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rasstetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57/58:1–45

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Missouri Agricultural Experiment Station and the EARTH University Research committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto A. Leblanc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leblanc, H.A., McGraw, R.L. & Nygren, P. Dinitrogen-fixation by three neotropical agroforestry tree species under semi-controlled field conditions. Plant Soil 291, 199–209 (2007). https://doi.org/10.1007/s11104-006-9186-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-006-9186-0

Keywords

Navigation