Skip to main content

Advertisement

Log in

How salt stress-responsive proteins regulate plant adaptation to saline conditions

  • Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

An overview is presented of recent advances in our knowledge of candidate proteins that regulate various physiological and biochemical processes underpinning plant adaptation to saline conditions.

Abstract

Salt stress is one of the environmental constraints that restrict plant distribution, growth and yield in many parts of the world. Increased world population surely elevates food demands all over the globe, which anticipates to add a great challenge to humanity. These concerns have necessitated the scientists to understand and unmask the puzzle of plant salt tolerance mechanisms in order to utilize various strategies to develop salt tolerant crop plants. Salt tolerance is a complex trait involving alterations in physiological, biochemical, and molecular processes. These alterations are a result of genomic and proteomic complement readjustments that lead to tolerance mechanisms. Proteomics is a crucial molecular tool that indicates proteins expressed by the genome, and also identifies the functions of proteins accumulated in response to salt stress. Recently, proteomic studies have shed more light on a range of promising candidate proteins that regulate various processes rendering salt tolerance to plants. These proteins have been shown to be involved in photosynthesis and energy metabolism, ion homeostasis, gene transcription and protein biosynthesis, compatible solute production, hormone modulation, cell wall structure modification, cellular detoxification, membrane stabilization, and signal transduction. These candidate salt responsive proteins can be therefore used in biotechnological approaches to improve tolerance of crop plants to salt conditions. In this review, we provided comprehensive updated information on the proteomic data of plants/genotypes contrasting in salt tolerance in response to salt stress. The roles of salt responsive proteins that are potential determinants for plant salt adaptation are discussed. The relationship between changes in proteome composition and abundance, and alterations observed in physiological and biochemical features associated with salt tolerance are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbasi F, Komatsu S (2004) A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics 4:2072–2081

  • Acet T, Kadıoglu A (2020) SOS5 gene-abscisic acid crosstalk and their interaction with antioxidant system in Arabidopsis thaliana under salt stress. Physiol Mol Biol Plants 26:1831–1845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal P, Khurana P (2020) TaZnF, a C3HC4 type RING zinc finger protein from Triticum aestivum is involved in dehydration and salinity stress. J Plant Biochem Biotech 29:395–406

  • Aghaei K, Komatsu S (2013) Crop and medicinal plants proteomics in response to salt stress. Front Plant Sci 4:8

  • Aghaei K, Ehsanpour AA, Shah AH, Komatsu S (2009) Proteome analysis of soybean hypocotyls and root under salt stress. Amino Acids 36:91–98

    CAS  PubMed  Google Scholar 

  • Ahmad P, AbdelLatef AAH, Rasool S, Akram NA, Ashraf M, Gucel S (2016) Role of proteomics in crop stress tolerance. Front Plant Sci 7:1336

  • Al-Harrasi I, Jana GA, Patankar HV, Al-Yahyai R, Rajappa S, Kumar PP, Mahmoud W, Yaish MW (2020) A novel tonoplast Na+/H+ antiporter gene from date palm (PdNHX6) confers enhanced salt tolerance response in Arabidopsis. Plant Cell Reports 39:1079–1093

  • Al-Khateeb W, Muhaidat R, Alahmed S, AlZoubi MS, Al-Batayneh KM, El-Oqlah A, Gamar MA, Hussein E, Aljabali AA, Alkaraki AK (2020) Heat shock proteins gene expression and physiological responses in durum wheat (Triticum durum) under salt stress. Physiol Mol Biol Plants 26:1599–1608

  • Alnayef M, Solis C, Shabala L, Ogura T, Chen Z, Bose J, Maathuis FJM, Venkataraman G, Tanoi K, Yu M, Zhuo M, Horie T, Shabala S (2020) Changes in expression level of OsHKT1;5 alters activity of membrane transporters involved in K+ and Ca2+ acquisition and homeostasis in salinized rice roots. Int J Mol Sci 21:4882

  • Alshareef NO, Wang JY, Ali S, Al-Babili S, Tester M, Sandra M, Schmöckel SM (2019) Overexpression of the NAC transcription factor JUNGBRUNNEN1 (JUB1) increases salinity tolerance in tomato. Plant Physiol Biochem 140:113–121

  • Arefian M, Vessal S, Malekzadeh-Shafaroudi S, Siddique KHM, Bagheri A (2019) Comparative proteomics and gene expression analyses revealed responsive proteins and mechanisms for salt tolerance in chickpea genotypes. BMC Plant Biol 19:300

    PubMed  PubMed Central  Google Scholar 

  • Aydemir BC, Özmen CY, Kibar U, Mutaf F, Büyük PB, Bakir M, Ergül A (2020) Salt stress induces endoplasmic reticulum stress-responsive genes in a grapevine rootstock. PLoS ONE 15:e0236424

    Google Scholar 

  • Azachi M, Sadka A, Fisher M, Goldshlag P, Gokhman I, Zamir A (2002) Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiol 129:1320–1329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bandehagh A, Salekdeh GH, Toorchi M, Mohammadi A, Komatsu S (2011) Comparative proteomic analysis of canola leaves under salinity stress. Proteomics 11:1965–1975

    CAS  PubMed  Google Scholar 

  • Bao Y, Bassham DC, Howell SH (2019) A functional unfolded protein response is required for normal vegetative development. Plant Physiol 179:1834–1843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barbaglia AM, Tamot B, Greve V, Hoffmann-Benning S (2016) Phloem proteomics reveals new lipid-binding proteins with a putative role in lipid-mediated signaling. Front Plant Sci 7:563

    PubMed  PubMed Central  Google Scholar 

  • Bariola PA, Retelska D, Stasiak A, Kammerer RA, Fleming A, Hijri M, Frank S, Farmer EE (2004) Remorins form a novel family of coiled coil-forming oligomeric and filamentous proteins associated with apical, vascular and embryonic tissues in plants. Plant Mol Biol 55:579–594

    CAS  PubMed  Google Scholar 

  • Barkla BJ, Vera-Estrella R, Hernandez-Coronado M, Pantoja O (2009) Quantitative proteomics of the tonoplast reveals a role for glycolytic enzymes in salt tolerance. Plant Cell 21:4044–4058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bassil E, Zhang S, Gong H, Tajima H, Blumwald E (2019) Cation specificity of vacuolar NHX-type cation/H+ antiporters. Plant Physiol 179:616–629

    CAS  PubMed  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signaling. J Exp Bot 65:1229–1240

    CAS  PubMed  Google Scholar 

  • Benabderrahim MA, Guiza M, Haddad M (2020) Genetic diversity of salt tolerance in tetraploid alfalfa (Medicago sativa L.). Acta Physiol Plant 42:5

    CAS  Google Scholar 

  • Belghith I, Senkler J, Hildebrandt T, Abdelly C, Braun H, Debez A (2018) Comparative analysis of salt-induced changes in the root proteome of two accessions of the halophyte Cakile maritima. Plant Physiol Biochem 100:20–29

    Google Scholar 

  • Benjamin JJ, Miras-Moreno B, Araniti F, Salehi H, Bernardo L, Parida A, Lucini L (2020) Proteomics revealed distinct responses to salinity between the halophytes Suaeda maritima (L.) Dumort and Salicornia brachiata (Roxb). Plants 9:227

    CAS  PubMed Central  Google Scholar 

  • Biradar H, Karan R, Subudhi PK (2018) Transgene pyramiding of salt responsive protein 3–1 (SaSRP3–1) and SaVHAc1 from Spartina alterniflora L. enhances salt tolerance in rice. Front Plant Sci 9:1304

    PubMed  PubMed Central  Google Scholar 

  • Biswas S, Islam MN, Sarker S, Tuteja N, Seraj ZI (2019) Overexpression of heterotrimeric G protein beta subunit gene (OsRGB1) confers both heat and salinity stress tolerance in rice. Plant Physiol Biochem 144:334–344

    CAS  PubMed  Google Scholar 

  • Breisch J, Averhoff B (2020) Identification of osmo-dependent and osmo-independent betaine-choline-carnitine transporters in Acinetobacter baumannii: role in osmostress protection and metabolic adaptation. Environ Microbiol 22:2724–2735

    CAS  PubMed  Google Scholar 

  • Capriotti AL, Borrelli GM, Colapicchioni V, Papa R, Piovesana S, Samperi R, Stampachiacchiere S, Laganà A (2014) Proteomic study of a tolerant genotype of durum wheat under salt-stress conditions. Anal Bioanal Chem 406:1423–1435

    CAS  PubMed  Google Scholar 

  • Celik O, Cakır BC, Atak C (2019) Identification of the antioxidant defense genes which may provide enhanced salt tolerance in Oryza sativa L. Physiol Mol Biol Plants 25:85–99

    CAS  PubMed  Google Scholar 

  • Champeyrous C, Bellati J, Barberon M, Rofidal V, Maurel C, Santoni V (2019) Regulation of a plant aquaporin by a Casparian strip membrane domain protein-like. Plant Cell Environ 42:1788–1801

    Google Scholar 

  • Chattopadhyay A, Subba P, Pandey A, Bhushan D, Kumar R, Datta A, Chakraborty S, Chakraborty N (2011) Analysis of the grasspea proteome and identification of stress-responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. Phytochemistry 72:1293–1307

    CAS  PubMed  Google Scholar 

  • Chen A, Wang G, Qu Z, Lu C, Liu N, Wang F, Xia G (2007) Ectopic expression of ThCYP1, a stress-resposive cyclophilin gene from Thellungiella halophila, confers salt tolerance in fission yeast and tobacco cells. Plant Cell Rep 26:237–245

    CAS  PubMed  Google Scholar 

  • Chen K, Song M, Guo Y, Liu L, Xue H, Dai H, Zhang Z (2019) MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress-responsive signals. Plant Biotechnol J 17:2341–2355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Shao Q, Li F, Lv X, Huang X, Tang H, Dong S, Zhang H, Huang J (2020) A little membrane protein with 54 amino acids confers salt tolerance in rice (Oryza sativa L.). Acta Physiol Plant 42:87

    Google Scholar 

  • Cheng Y, Qi Y, Zhu Q, Chen X, Wang N, Zhao X, Chen H, Cui X, Xu L, Zhang W (2009) New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics 9:3100–3114

    CAS  PubMed  Google Scholar 

  • Cheng Y, Chen G, Hao D, Lu H, Shi M, Mao Y, Huang X, Zhang Z, Xue L (2014) Salt-induced root protein profile changes in seedlings of maize inbred lines with differing salt tolerances. Chealean J Agri Res 74:468–476

    Google Scholar 

  • Cheng T, Chen J, Zhang J, Shi S, Zhou Y, Lu L (2015) Physiological and proteomic analyses of leaves from the halophyte Tangut Nitraria reveals diverse response pathways critical for high salinity tolerance. Front Plant Sci 6:30

    PubMed  PubMed Central  Google Scholar 

  • Cheng Q, Gan Z, Wang Y, Lu S, Hou Z, Li H, Xiang H, Liu B, Kong F, Dong L (2020) The soybean gene J contributes to salt stress tolerance by up-regulating salt-responsive genes. Front Plant Sci 11:272

    PubMed  PubMed Central  Google Scholar 

  • Che-Othman MH, Millar AH, Taylor NL (2017) Connecting salt stress signalling pathways with salinity-induced changes in mitochondrial metabolic processes in C3 plants. Plant Cell Environ 40:2875–2905

    CAS  PubMed  Google Scholar 

  • Chitteti BR, Peng Z (2007) Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J Proteome Res 6:1718–1727

    CAS  PubMed  Google Scholar 

  • Cho HY, Lee C, Hwang S, Park YC, Lim HL, Jang CS (2014) Overexpression of the OsChI1 gene, encoding a putative laccase precursor, increases tolerance to drought and salinity stress in transgenic Arabidopsis. Gene 552:98–105

    CAS  PubMed  Google Scholar 

  • Choi JY, Seo YS, Kim SJ, Kim WT, Shin JS (2011) Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang). Plant Cell Rep 30:867–877

    CAS  PubMed  Google Scholar 

  • Chun HJ, Baek D, Cho HM, Lee SH, Jin BJ, Yun D, Hong Y, Kim MC (2019) Lignin biosynthesis genes play critical roles in the adaptation of Arabidopsis plants to high-salt stress. Plant Signal Behav 14:e1625697

    Google Scholar 

  • Cosgrove DJ (2015) Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol 28:162–172

    Google Scholar 

  • Dani V, Simon WJ, Duranti M, Croy RR (2005) Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics 5:737–745

    CAS  PubMed  Google Scholar 

  • Das P, Majumder AL (2019) Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance. Funt Integr Genom 19:61–73

    CAS  Google Scholar 

  • Degenhardt B, Gimmler H (2000) Cell wall adaptations to multiple environmental stresses in maize roots. J Exp Bot 51:595–603

    CAS  PubMed  Google Scholar 

  • Devireddy AR, Zandalinas SI, Fichman Y, Mittler R (2020) Integration of ROS and hormone signaling during abiotic stress. Plant J. https://doi.org/10.1111/tpj.15010

    Article  PubMed  Google Scholar 

  • Ditta A (2013) Salt tolerance in cereals: molecular mechanisms and applications. In: Rout RG, Das AB (eds) Molecular stress physiology of plants. Springer, New Delhi

    Google Scholar 

  • Dixit A, Tomar P, Vaine E, Abdullah H, Hazen S, Dhankher OP (2018) A stress-associated protein, AtSAP13, from Arabidopsis thaliana provides tolerance to multiple abiotic stresses. Plant Cell Environ 41:1171–1185

    CAS  PubMed  Google Scholar 

  • Du CX, Fan HF, Guo SR, Tezuka T, Li J (2010) Proteomic analysis of cucumber seedling roots subjected to salt stress. Phytochemistry 71:1450–1459

    CAS  PubMed  Google Scholar 

  • Eljebbawi A, Guerrero YCR, Dunand C, Estevez JM (2021) Highlighting reactive oxygen species as multitaskers in root development. iScience 24:101978

    PubMed  Google Scholar 

  • Endler A, Kesten C, Schneider R, Zhang Y, Ivakov A, Froehlich A, Funke N, Persson S (2015) A mechanism for sustained cellulose synthesis during salt stress. Cell 162:1353–1364

    CAS  PubMed  Google Scholar 

  • Endler A, Schneider R, Kesten C, Lampugnani ER, Persson S (2016) The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6. Plant Signal Behav 11:e1135281

    PubMed  PubMed Central  Google Scholar 

  • Fan W, Zhang M, Zhang H, Zhang P (2012) Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS ONE 7:e37344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Y, Wan S, Jiang Y, Xia Y, Chen X, Gao M, Cao Y, Luo Y, Zhou Y, Jiang X (2018) Over-expression of a plasma membrane H+-ATPase SpAHA1 conferred salt tolerance to transgenic Arabidopsis. Protoplasma 255:1827–1837

    CAS  PubMed  Google Scholar 

  • Fang CY, Zhang H, Wan J, Wu YY, Li K, Jin C, Chen W, Wang SC, Wang WS, Zhang HW, Zhang P, Zhang F, Qu LH, Liu X, Zhou D, Luo J (2016) Control of leaf senescence by an MeOH-jasmonates cascade that is epigenetically regulated by OsSRT1 in rice. Mol Plant 9:1366–1378

    CAS  PubMed  Google Scholar 

  • Fang C, Li K, Wu Y, Wang D, Zhou J, Liu X, Li Y, Jin C, Liu X, Mur LA, Luo J (2019) OsTSD2-mediated cell wall modification affects ion homeostasis and salt tolerance. Plant Cell Environ 42:1503–1512

    CAS  PubMed  Google Scholar 

  • FAO Food and Agriculture Organization of the United Nations and ITPS, Intergovernmental Technical Panel on Soils (2015) Status of the world’s soil resources (SWSR), main report

  • Fatehi F, Hosseinzadeh A, Alizadeh H, Brimavandi T, Struik PC (2012) The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Mol Biol Rep 39:6387–6397

    CAS  PubMed  Google Scholar 

  • Feng X, Zhang H, Ali M, Gai W, Cheng G, Yu Q, Yang S, Li X, Gong Z (2019) A small heat shock protein CaHsp25.9 positively regulates heat, salt, and drought stress tolerance in pepper (Capsicum annuum L.). Plant Physiol Biochem 142:151–162

    CAS  PubMed  Google Scholar 

  • Flowers TJ, Munns R, Colmer TD (2015) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115:419–431

    CAS  PubMed  Google Scholar 

  • Frukh A, Siddiqi TO, Khan MIR, Ahmad A (2020) Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress. Plant Physiol Biochem 146:55–70

    CAS  PubMed  Google Scholar 

  • Fu J, Zhang D, Liu Y, Ying S, Shi Y, Song Y, Li Y, Wang T (2012) Isolation and characterization of maize PMP3 genes involved in salt stress tolerance. PLoS ONE 7:e31101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu L, Shen Q, Kuang L, Wu D, Zhang G (2019) Transcriptomic and alternative splicing analyses reveal mechanisms of the difference in salt tolerance between barley and rice. Environ Exp Bot 166:103810

    CAS  Google Scholar 

  • Furtado BU, Nagy I, Asp T, Tyburski J, Skorupa M, Gołębiewski M, Hulisz P, Hrynkiewicz H (2019) Transcriptome profiling and environmental linkage to salinity across Salicornia europaea vegetation. BMC Plant Biol 19:427

    PubMed  PubMed Central  Google Scholar 

  • Fujita T, Maggio A, Garcia-Rios M, Bressan RA, Csonka LN (1998) Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for Δ1-pyrroline-5-carboxylate synthetase from tomato. Plant Physiol 118:661–674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Mizukado S, Fujita Y, Ichikawa T, Nakazawa M, Seki M (2007) Identification of stress-tolerance-related transcription-factor genes via mini-scale Full-length cDNA Over-eXpressor (FOX) gene hunting system. Biochem Biophys Res Commun 364:250–257

    CAS  PubMed  Google Scholar 

  • Gagneul D, Ainouche A, Duhaze C, Lugan R, Larher FR, Bouchereau A (2007) A reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae Limonium latifolium. Plant Physiol 144:1598–1611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geilfus C, Zorb C, Muhling KH (2010) Salt stress differentially affects growth-mediating β-expansins in resistant and sensitive maize (Zea mays L.). Plant Physiol Biochem 48:993–998

    CAS  PubMed  Google Scholar 

  • Ghosh D, Lin Q, Xu J, Hellmann HA (2017) How plants deal with stress: exploration through proteome investigation. Front Plant Sci 8:1176

    PubMed  PubMed Central  Google Scholar 

  • Gishini MFS, Zebarjadi A, Abdoli-nasab M, Javaran MJ, Kahrizi D, Hildebrand D (2020) Endoplasmic reticulum retention signaling and transmembrane channel proteins predicted for oilseed ω3 fatty acid desaturase 3 (FAD3) genes. Funct Integr Genom 20:433–458

    Google Scholar 

  • Goharrizi KJ, Baghizadeh A, Kalantar M, Fatehi F (2019) Assessment of changes in some biochemical traits and proteomic profile of UCB-1 pistachio rootstock leaf under salinity stress. J Plant Growth Regul 39:608–630

    Google Scholar 

  • Grallath S, Weimar T, Meyer A, Gumy C, Suter-Grotemeyer M, Neuhaus J, Rentsch D (2005) The AtProT family. Compatible solute transporters with similar substrate specificity but differential expression patterns. Plant Physiol 137:117–126

  • Graus D, Konrad KR, Bemm F, Nebioglu MG, Lorey C, Duscha K, Guthoff T, Herrmann J, Ferjani A, Cuin TA, Roelfsema MRG, Schumacher K, Neuhaus HE, Marten I, Hedrich R (2018) High V-PPase activity is beneficial under high salt loads, but detrimental without salinity. New Phytol 219:1421–1432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith AA, Holmes W (2019) Fine tuning: effects of post-translational modification on Hsp70 chaperones. Int J Mol Sci 20:4207

    PubMed Central  Google Scholar 

  • Gu J, Xia Z, Luo Y, Jiang X, Qian B, Xie H, Zhu J, Xiong L, Zhu J, Wang Z (2018) Spliceosomal protein U1A is involved in alternative splicing and salt stress tolerance in Arabidopsis thaliana. Nucleic Acid Res 46:1777–1792

    CAS  PubMed  Google Scholar 

  • Guan L, Haider MS, Khan N, Nasim M, Jiu S, Fiaz M, Zhu X, Zhang K, Fang J (2018a) Transcriptome sequence analysis elaborates a complex defensive mechanism of grapevine (Vitis vinifera L.) in response to salt stress. Int J Mol Sci 19:4019

    PubMed Central  Google Scholar 

  • Guan C, Huang Y, Cui X, Liu S, Zhou Y, Zhang Y (2018b) Overexpression of gene encoding the key enzyme involved in proline-biosynthesis (PuP5CS) to improve salt tolerance in switchgrass (Panicum virgatum L.). Plant Cell Rep 37:1187–1199

    CAS  PubMed  Google Scholar 

  • Guo G, Gea P, Ma C, Li X, Lv D, Wang S, Ma W, Yan Y (2012) Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties. J Proteom 75:1867–1885

    CAS  Google Scholar 

  • Guo H, Wang Y, Wang L, Hu P, Wang Y, Jia Y, Zhang C, Zhang Y, Zhang Y, Wang C (2017) Expression of the MYB transcription factor gene BplMYB46 affects abiotic stress tolerance and secondary cell wall deposition in Betula platyphylla. Plant Biotechnol J 15:107–121

    CAS  PubMed  Google Scholar 

  • Guo H, Zhang L, Cui Y, Wang S, Bao A (2019) Identification of candidate genes related to salt tolerance of the secretohalophyte Atriplex canescens by transcriptomic analysis. BMC Plant Biol 19:213

    PubMed  PubMed Central  Google Scholar 

  • Guo Q, Tian XX, Mao PC, Meng L (2020) Overexpression of Iris lactea tonoplast Na+/H+ antiporter gene IlNHX confers improved salt tolerance in tobacco. Biol Plant 64:50–57

    CAS  Google Scholar 

  • Guo Z, Pogancev G, Meng W, Du Z, Liao P, Zhang R, Chye M (2021) The overexpression of rice ACYL-COA-BINDING PROTEIN4 improves salinity tolerance in transgenic rice. Environ Exp Bot 183:104349

    CAS  Google Scholar 

  • Guerriero G, Legay S, Hausman JF (2014) Alfalfa cellulose synthase gene expression under abiotic stress: a Hitchhiker’s guide to RTqPCR normalization. PLoS ONE 9:1–133

    Google Scholar 

  • Haq S, Khan A, Ali M, Khattak A, Gai W, Zhang H, Wei A, Gong Z (2019) Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. Int J Mol Sci 20:5321

    Google Scholar 

  • Han G, Lu C, Guo J, Qiao Z, Sui N, Qiu N, Wang B (2020) C2H2 zinc finger proteins: master regulator of abiotic stress responses in plants. Front Plant Sci 11:115

    PubMed  PubMed Central  Google Scholar 

  • Harpaz-Saad S, McFarlane HE, Xu SL, Divi UK, Forward B, Western TL, Kieber JJ (2011) Cellulose synthesis via the FEI2 RLK/SOS5 pathway and CELLULOSE SYNTHASE 5 is required for the structure of seed coat mucilage in Arabidopsis. Plant J 68:941–953

    CAS  PubMed  Google Scholar 

  • Henriquez-Valencia C, Moreno AA, Sandoval-Ibañez O, Mitina I, Blanco-Herrera F, Cifuentes-Esquivel N, Orellana A (2015) bZIP17 and bZIP60 regulate the expression of BiP3 and other salt stress responsive genes in an UPR-independent manner in Arabidopsis thaliana. J Cell Biochem 116:1638–1645

    CAS  PubMed  Google Scholar 

  • Hill JL, Josephs C, Barnes WJ, Anderson CT, Tien M (2018) Longevity in vivo of primary cell wall cellulose synthases. Plant Mol Biol 96:279–289

    CAS  PubMed  Google Scholar 

  • Hossain MA, Henriquez-Valencia C, Gómez-Páez M, Medina J, Orellana A, Vicente-Carbajosa J, Zouhar J (2016) Identification of novel components of the unfolded protein response in Arabidopsis. Front Plant Sci 7:650

    PubMed  PubMed Central  Google Scholar 

  • Hu P, Zhang K, Yang C (2019) BpNAC012 positively regulates abiotic stress responses and secondary wall biosynthesis. Plant Physiol 179:700–717

    CAS  PubMed  Google Scholar 

  • Huang K, Lin W, Cheng W (2018) Salt hypersensitive mutant 9, a nucleolar APUM23 protein, is essential for salt sensitivity in association with the ABA signaling pathway in Arabidopsis. BMC Plant Biol 18:40

    PubMed  PubMed Central  Google Scholar 

  • Huang H, Ullah F, Zhou D, Yi M, Zhao Y (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci 10:800

    PubMed  PubMed Central  Google Scholar 

  • Hussain S, Zhu C, Bai Z, Huang J, Zhu L, Cao X, Nanda S, Hussain S, Riaz A, Liang Q (2019) iTRAQ-based protein profiling and biochemical analysis of two contrasting rice genotypes revealed their differential responses to salt stress. Int J Mol Sci 20:547

    CAS  PubMed Central  Google Scholar 

  • Iwata Y, Koizumi N (2005) An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. Proc Natl Acad Sci (USA) 102:5280–5285

    CAS  Google Scholar 

  • Kang JS, Frank J, Kang CH, Kajiura H, Vikram M, Ueda A, Kim S, Bahk JD, Triplett B, Fujiyama K, Lee SY, von Schaewen A, Koiwa H (2008) Salt tolerance of Arabidopsis thaliana requires maturation of N-glycosylated proteins in the Golgi apparatus. Proc Natl Acad Sci (USA) 105:5933–5938

    CAS  Google Scholar 

  • Kang Y, Torres-Jerez V, An Z, Greve V, Huhman D, Krom N, Cui Y, Udvardi M (2019) Genome-wide association analysis of salinity responsive traits in Medicago truncatula. Plant Cell Environ 42:1513–1531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kao C (2017) Mechanisms of salt tolerance in rice plants: cell wall-related genes and expansins. J Taiwan Agric Res 66:87–93

    Google Scholar 

  • Katz A, Waridel P, Shevchenko A, Pick U (2007) Salt-induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella salina as revealed by blue native gel electrophoresis and nano-LC-MS/MS analysis. Mol Cell Proteom 6:1459

    CAS  Google Scholar 

  • Kesten C, Menna A, Sanchez-Rodriguez C (2017) Regulation of cellulose synthesis in response to stress. Curr Opin Plant Biol 40:106–113

    CAS  PubMed  Google Scholar 

  • Kesten C, Wallmann A, Schneider R, McFarlane HE, Diehl A, Khan GA, van Rossum BJ, Lampugnani ER, Szymanski WG, Cremer N (2019) The companion of cellulose synthase 1 confers salt tolerance through a Tau-like mechanism in plants. Nat Commun 10:857

    PubMed  PubMed Central  Google Scholar 

  • Khan MS, Yu X, Kikuchi A, Asahina M, Watanabe KN (2009) Genetic engineering of glycine betaine biosynthesis to enhance abiotic stress tolerance in plants. Plant Biotechnol 26:125–134

    CAS  Google Scholar 

  • Kholghi M, Toorchi M, Bandehagh A, Ostendorp A, Ostendorp S, Hanhart P, Kehr J (2019) Comparative proteomic analysis of salt-responsive proteins in canola roots by 2-DE and MALDI-TOF MS. Biochim Biophys Acta – Prot Proteom 1867:227–236

    CAS  Google Scholar 

  • Kimura S, Hunter K, Vaahtera L, Tran HC, Citterico M, Vaattovaara A, Wilkens MMT (2020) CRK2 and C-terminal phosphorylation of NADPH oxidase RBOHD regulate reactive oxygen species production in Arabidopsis. Plant Cell 32:1063–1080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong FJ, Oyanagi A, Komatsu S (2010) Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS-based proteomics approaches. Biochim Biophys Acta Prot Proteom 1804:124–136

    CAS  Google Scholar 

  • Kong Q, Mostafa HHA, Yang W, Wang J, Nuerawuti M, Wang Y, Song J, Zhang X, Ma L, Wang H, Li X (2021) Comparative transcriptome profiling reveals that brassinosteroid-mediated lignification plays an important role in garlic adaption to salt stress. Plant Physiol Biochem 158:34–42

    CAS  PubMed  Google Scholar 

  • Kosová K, Prášil IT, Vítámvás P (2013) Protein contribution to plant salinity response and tolerance acquisition. Int J Mol Sci 14:6757–6789

    PubMed  PubMed Central  Google Scholar 

  • Kosová K, Vítámvás P, Urban MO, Prášil IT, Renaut J (2018) Plant abiotic stress proteomics: the major factors determining alterations in cellular proteome. Front Plant Sci 9:122

    PubMed  PubMed Central  Google Scholar 

  • Krishnamurthi SS, George S, Meenakshisundram S, Parida A (2017) Proteomic analysis of long-term salt responsive proteins in the halophyte Suaeda maritime. Plant Omics J 10:197–204

    CAS  Google Scholar 

  • Krishnamurthy P, Tan XF, Lim TK, Lim T, Kumar PP, Loh C, Lin Q (2014) Proteomic analysis of plasma membrane and tonoplast from the leaves of mangrove plant Avicennia officinalis. Proteomics 14:2545–2557

    CAS  PubMed  Google Scholar 

  • Krishnamurthy P, Mohanty B, Wijaya E, Lee D, Lim T, Lin Q, Xu J, Loh C, Kumar PP (2017) Transcriptomics analysis of salt stress tolerance in the roots of the mangrove Avicennia officinalis. Sci Rep 7:10031

  • Krishnamurthy P, Qingsong L, Kumar PP (2018) Proteomics perspectives in post-genomic era for producing salinity stress-tolerant crops. In: Kumar V, Wani SH, Suprasanna P, Tran LP (eds) Salinity responses and tolerance in plants, vol 2. Springer, Singapore

    Google Scholar 

  • Krishnamurthy P, Muthusamy M, Kim JA, Jeong M, Lee SI (2019) Brassica rapa expansin-like B1 gene (BrEXLB1) regulate growth and development in transgenic Arabidopsis and elicits response to abiotic stresses. J Plant Biochem Biotechnol 28:437–446

    CAS  Google Scholar 

  • Kumari S, Sabharwal VP, Kushwaha HR, Sopory SK, Singla-Pareek SL, Pareek A (2009) Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L. Funct Integr Genomics 9:109–123

  • Kwon Y, Kim SH, Jung MS, Kim MS, Oh JE, Ju HW, Kim KI, Vierling E, Lee H, Hong SW (2007) Arabidopsis hot2 encodes an endochitinase-like protein that is essential for tolerance to heat, salt and drought stresses. Plant J 49:184–193

    CAS  PubMed  Google Scholar 

  • Lee HJ, Abdula SE, Ryu HJ, Jee MG, Jang DW, Kang KK, Cho YG (2012) BrCIPK1 encoding CBL-interacting protein kinase 1 from Bassica rapa regulates abiotic stress responses by increasing proline biosynthesis. In: 10th international symposium on rice functional genomics, Chiang Mai, Thailand. OG-11

  • Lei X, Liu Z, Li XP, Tan B, Wu J, Gao C (2021) Screening and functional identification of salt tolerance HMG genes in Betula platyphylla. Environ Exp Bot 181:104235

    CAS  Google Scholar 

  • Léon D, Vermeue MP, Gupta P, Bunagan MR (2020) The effect of salt and temperature on the conformational changes of P1LEA-22, a repeat unit of plant late embryogenesis abundant proteins. J Pep Sci 2020:e3247

    Google Scholar 

  • Li W, Li Q (2017) Effect of environmental salt stress on plants and the molecular mechanism of salt stress tolerance. Int J Environ Sci Nat Res 7:555714

    Google Scholar 

  • Li XJ, Yang MF, Chen H, Qu LQ, Chen F, Shen SH (2010) Abscisic acid pretreatment enhances salt tolerance of rice seedlings: proteomic evidence. Biochim Biophys Acta 1804:929–940

    CAS  PubMed  Google Scholar 

  • Li H, Dong Y, Yin H, Wang N, Yang J, Liu X, Wang Y, Wu J, Li X (2011) Characterization of the stress associated micro RNAs in Glycine max by deep sequencing. BMC Plant Biol 11:170

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Humbert S, Howell SH (2012a) ZmbZIP60 mRNA is spliced in maize in response to ER stress. BMC Res Notes 5:144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Lei L, Somerville CR, Gu Y (2012b) Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc Natl Acad Sci (USA) 109:185–190

    CAS  Google Scholar 

  • Li W, Guan Q, Wang ZY, Wang Y, Zhu J (2013) A bi-functional xyloglucan galactosyltransferase is an indispensable salt stress tolerance determinant in Arabidopsis. Mol Plant 6:1344–1354

    CAS  PubMed  Google Scholar 

  • Li H, Wang Z, Ke Q, Ji CY, Jeong JC, Lee H, Lim YP, Xu B, Deng X, Kwak S (2014) Overexpression of codA gene confers enhanced tolerance to abiotic stresses in alfalfa. J Plant Physiol 85:31–40

    CAS  Google Scholar 

  • Li W, Zhao F, Fang W, Xie D, Hou J, Yang X, Zhao Y, Tang Z, Nie L, Lv S (2015) Identification of early salt stress responsive proteins in H seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique. Front Plant Sci 6:732

    PubMed  PubMed Central  Google Scholar 

  • Li J, Chen C, Wei J, Pan Y, Su C, Zhang X (2019a) SpPKE1, a multiple stress-responsive gene confers salt tolerance in tomato and tobacco. Int J Mol Sci 20:2478

    CAS  PubMed Central  Google Scholar 

  • Li M, He X, Hao D, Wu J, Zhao J, Yang Q, Chen X (2019b) 6-SFT, a protein from Leymus mollis, positively regulates salinity tolerance and enhances fructan levels in Arabidopsis thaliana. Int J Mol Sci 20:2691

    CAS  PubMed Central  Google Scholar 

  • Li S, Wang N, Ji D, Zhang W, Wang Y, Yu Y, Zhao S, Lyu M, You J, Zhang Y, Wang L, Wang X, Liu Z, Tong J, Xiang F (2019c) A GmSIN1/GmNCED3s/GmRbohBs feed-forward loop acts as a signal amplifier that regulates root growth in soybean exposed to salt stress. Plant Cell 31:2107–2130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Han X, Feng D, Yuan D, Huang L (2019d) Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: do we understand what they are whispering? Int J Mol Sci 20:671

    PubMed Central  Google Scholar 

  • Li Z, Xu C, Wang J (2020) Integrated physiological, transcriptomic and proteomic analyses revealed molecular mechanism for salt resistance in Solidago canadensis L. Environ Exp Bot 179:104211

    CAS  Google Scholar 

  • Liang M, Haroldsen V, Cai X, Wu Y (2006) Expression of a putative laccase gene, ZmLAC1, in maize primary roots under stress. Plant Cell Environ 29:746–753

    CAS  PubMed  Google Scholar 

  • Liu JX, Srivastava R, Howell SH (2008) Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis. Plant Cell Environ 31:1735–1743

    CAS  PubMed  Google Scholar 

  • Liu Q, Luo L, Zheng L (2018) Lignins: biosynthesis and biological functions in plants. Int J Mol Sci 19:335

    PubMed Central  Google Scholar 

  • Liu A, Xiao H, Li M, Wong F, Yung W, Ku Y, Wang Q, Wang X, Xie M, Yim AK, Chan T, Lam H (2019a) Transcriptomic reprogramming in soybean seedlings under salt stress. Plant Cell Environ 42:98–114

    CAS  PubMed  Google Scholar 

  • Liu C, Xu Y, Feng Y, Long D, Cao B, Xiang Z, Zhao A (2019b) Ectopic expression of mulberry G-proteins alters drought and salt stress tolerance in tobacco. Int J Mol Sci 20:89

    Google Scholar 

  • Liu J, Han X, Yang T, Cui W, Wu A, Fu C, Wang B, Liu L (2019c) Genome-wide transcriptional adaptation to salt stress in Populus. BMC Plant Biol 19:367

    PubMed  PubMed Central  Google Scholar 

  • Liu J, Jiang C, Kang L, Zhang H, Song Y, Zou Z, Zheng W (2020a) Over-expression of a 14-3-3 protein from foxtail millet improves plant tolerance to salinity stress in Arabidopsis thaliana. Front Plant Sci 11:449

    PubMed  PubMed Central  Google Scholar 

  • Liu M, Yu H, Ouyang B, Shi C, Demidchik V, Hao Z, Yu M, Shabala S (2020b) NADPH oxidases and the evolution of plant salinity tolerance. Plant Cell Environ. https://doi.org/10.1111/pce.13907

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu A, Xiao Z, Wang Z, Lam H, Chye M (2021a) Galactolipid and phospholipid profile and proteome alterations in soybean leaves at the onset of salt stress. Front Plant Sci 12:644408

    PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhang W, Long S, Zhao C (2021b) Maintenance of cell wall integrity under high salinity. Int J Mol Sci 22:3260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long R, Li M, Zhang T, Kang J, Sun Y, Cong L, Gao Y, Liu F, Yang Q (2016) Comparative proteomic analysis reveals differential root proteins in Medicago sativa and Medicago truncatula in response to salt stress. Front Plant Sci 7:424

    PubMed  PubMed Central  Google Scholar 

  • López-Cristoffanini C, Bundó M, Serrat X, Segundo BS, López-Carbonell M, Nogués S (2021) A comprehensive study of the proteins involved in salinity stress response in roots and shoots of the FL478 genotype of rice (Oryza sativa L. ssp. indica). Crop J. https://doi.org/10.1016/j.cj.2020.10.009

    Article  Google Scholar 

  • Lu P, Kang M, Jiang X, Dai F, Gao J, Zhang C (2013) RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis. Planta 237:1547–1559

    PubMed  Google Scholar 

  • Lou D, Wang H, Yu D (2018) The sucrose non-fermenting-1-related protein kinases SAPK1 and SAPK2 function collaboratively as positive regulators of salt stress tolerance in rice. BMC Plant Biol 18:203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo D, Niu X, Yu J, Yan J, Gou X, Lu B, Liu Y (2012) Rice choline monooxygenase (OsCMO) protein functions in enhancing glycine betaine biosynthesis in transgenic tobacco but does not accumulate in rice (Oryza sativa L. ssp. japonica). Plant Cell Rep 31:1625–1635

    CAS  PubMed  Google Scholar 

  • Luo D, Zhou Q, Wu Y, Chai X, Liu W, Wang Y, Yang Q, Wang Z, Liu Z (2019a) Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). BMC Plant Biol 19:32

    PubMed  PubMed Central  Google Scholar 

  • Luo D, Hou X, Zhang Y, Meng Y, Zhang H, Liu S, Wang X, Chen R (2019b) CaDHN5, a dehydrin gene from pepper, plays an important role in salt and osmotic stress responses. Int J Mol Sci 20:1989

    CAS  PubMed Central  Google Scholar 

  • Lv S, Tai F, Guo J, Jiang P, Lin K, Wang D, Zhang X, Li Y (2021) Phosphatidylserine synthase from Salicornia europaea is involved in plant salt tolerance by regulating plasma membrane stability. Plant Cell Physiol 62:66–79

    CAS  PubMed  Google Scholar 

  • Ma Y, Chen M, Xu D, Fang G, Wang E, Gao S, Xu Z, Li L, Zhang X, Min D, Ma Y (2015) G protein β subunit AGB1 positively regulates salt stress tolerance in Arabidopsis. J Integr Agric 14:314–325

    CAS  Google Scholar 

  • Ma Q, Sun M, Kang H, Lu J, You C, Hao Y (2019) A CIPK protein kinase targets sucrose transporter MdSUT2.2 at Ser254 for phosphorylation to enhance salt tolerance. Plant Cell Environ 42:918–930

    CAS  PubMed  Google Scholar 

  • Mahi H, Pérez-Hormaeche J, De Luca A, Villalta I, Espartero J, Gámez-Arjona F, Fernández JL, Bundó M, Mendoza I, Mieulet D, Lalanne E, Lee S, Yun D, Guiderdoni E, Aguilar M, Leidi EO, Pardo JM, Quintero FJ (2019) A critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice. Plant Physiol 180:1046–1065

    PubMed  PubMed Central  Google Scholar 

  • Maksup S, Sengsai S, Laosuntisuk K, Asayot J, Pongprayoon W (2020) Physiological responses and the expression of cellulose and lignin associated genes in Napier grass hybrids exposed to salt stress. Acta Physiol Plant 42:109

    CAS  Google Scholar 

  • Manaa A, Ahmed HB, Valot B, Bouchet JP, Aschi-Smiti S, Causse M, Faurobert M (2011) Salt and genotype impact on plant physiology and root proteome variations in tomato. J Exp Bot 62:2797–2813

    CAS  PubMed  Google Scholar 

  • Mansour MMF (1995) NaCl alteration of plasma membrane of Allium cepa epidermal cells. Alleviation by calcium. J Plant Physiol 145:726–730

    CAS  Google Scholar 

  • Mansour MMF (2013) Plasma membrane permeability as an indicator of salt tolerance in plants. Biol Plant 57:1–10

    CAS  Google Scholar 

  • Mansour MMF (2014) The plasma membrane transport systems and adaptation to salinity. J Plant Physiol 171:1787–1800

    CAS  PubMed  Google Scholar 

  • Mansour MMF, Ali EF (2017a) Glycinebetaine in saline conditions: an assessment of the current state of knowledge. Acta Physiol Plant 39:56

    Google Scholar 

  • Mansour MMF, Ali EF (2017b) Evaluation of proline functions in saline conditions. Phytochemistry 140:52–68

    CAS  PubMed  Google Scholar 

  • Mansour MMF, Salama KHA (2019) Cellular mechanisms of plant salt tolerance. In: Giri B, Varma A (eds) Microorganisms in saline environment: strategies and functions. Springer, Cham, pp 169–210

    Google Scholar 

  • Mansour MMF, Salama KHA (2020) Proline and abiotic stresses: responses and adaptation. In: Hasanuzzaman M (ed) Plant ecophysiology and adaptation under climate change: mechanisms and perspectives II. Springer, Singapore, pp 357–397

    Google Scholar 

  • Mansour MMF, Stadelmann EJ (1994) NaCl-induced changes in protoplasmic characteristics of Hordeum vulgare cultivars differing in salt tolerance. Physiol Plant 91:389–394

    CAS  Google Scholar 

  • Mansour MMF, Lee-Stadelmann OY, Stadelmann EJ (1993) Solute potential and cytoplasmic viscosity in Triticum aestivum and Hordeum vulgare under salt stress. A comparison of salt resistant and salt sensitive lines and cultivars. J Plant Physiol 142:623–628

    CAS  Google Scholar 

  • Mansour MMF, van Hasselt PR, Kuiper PJC (1994) Plasma membrane lipid alterations induced by NaCl in winter wheat roots. Physiol Plant 92:473–478

    CAS  Google Scholar 

  • Mansour MMF, van Hasselt PR, Kuiper PJC (1998) Ca2+, Mg2+-ATPase activities in winter wheat root plasma membranes as affected by NaCl stress during growth. J Plant Physiol 153:181–187

    CAS  Google Scholar 

  • Mansour MMF, Van Hasselt PR, Kuiper PJC (2000) NaCl effects on root plasma membrane ATPase of salt tolerant wheat. Biol Plant 43:61–77

    CAS  Google Scholar 

  • Mansour MMF, Salama KHA, Allam HYH (2015) Role of the plasma membrane in saline conditions: lipids and proteins. Bot Rev 81:416–451

    Google Scholar 

  • Mansour MMF, Ali EF, Salama KHA (2019) Does seed priming play a role in regulating reactive oxygen species under saline conditions? In: Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M (eds) Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms. Wiley, Hoboken, pp 437–488

    Google Scholar 

  • Mansour MMF, Salama KHA, Morsy AA, Emam MM (2020) Plasma membrane lipids and adaptation of plants to salt stress. In: Daniels JA (ed) Advances in environmental research, vol 78. Nova Science Publishers, New York, pp 1–111

    Google Scholar 

  • Mansour MMF, Emam MM, Salama KHA, Morsy AA (2021) Sorghum under saline conditions: responses, tolerance mechanisms, and management strategies. Planta 254:00024

    CAS  Google Scholar 

  • Marsalova L, Vitamvas P, Hynek R, Prasil IT, Kosova K (2016) Proteomic response of Hordeum vulgare cv tadmor and Hordeum marinum to salinity stress: similarities and differences between a glycophyte and a halophyte. Front Plant Sci 7:1154

    PubMed  PubMed Central  Google Scholar 

  • Martinez V, Mestre TC, Rubio F, Girones-Vilaplana A, Moreno DA, Mittler R, Rivero RM (2016) Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress. Front Plant Sci 7:838

    PubMed  PubMed Central  Google Scholar 

  • Maszkowska J, Dębski J, Kulik A, Kistowski M, Bucholc M, Lichocka M, Klimecka M, Sztatelman O, Szymanska KP, Dadlez M, Dobrowolska G (2019) Phosphoproteomic analysis reveals that dehydrins ERD10 and ERD14 are phosphorylated by SNF1-related protein kinase 2.10 in response to osmotic stress. Plant Cell Environ 42:931–946

    CAS  PubMed  Google Scholar 

  • Matsubayashi Y, Sakagami Y (2006) Peptide hormones in plants. Annu Rev Plant Biol 57:649–674

    CAS  PubMed  Google Scholar 

  • Maurya VK, Gothandam KM (2014) Factors influencing the salt stress tolerance in plants—an overview. Res J Biotechnol 9:79–88

    Google Scholar 

  • Miao H, Sun P, Liu J, Wang J, Xu B, Jin Z, (2018) Overexpression of a novel ROP gene from the banana (MaROP5g) confers increased salt stress tolerance. Int J Mol Sci 18:3108

    Google Scholar 

  • Milewska-Hendel A, Baczewska AH, Sala K, Dmuchowski W, Brągoszewska P, Gozdowski D, Jozwiak A, Chojnacki T, Swiezewska E, Kurczynska E (2017) Quantitative and qualitative characteristics of cell wall components and prenyl lipids in the leaves of Tilia xeuchlora trees growing under salt stress. PLoS ONE 12:e0172682

    PubMed  PubMed Central  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    CAS  PubMed  Google Scholar 

  • Moons A, Bauw G, Prinsen E, Van Montagu M, Straeten D (1995) Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant indica rice varieties. Plant Physiol 107:177–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mostek A, Borner A, Badowiec A, Weidner S (2015) Alterations in root proteome of salt-sensitive and tolerant barley lines under salt stress conditions. J Plant Physiol 174:166–176

    CAS  PubMed  Google Scholar 

  • Mu C, Zhou L, Shan L, Li F, Li Z (2019) Phosphatase GhDsPTP3a interacts with annexin protein GhANN8b to reversely regulate salt tolerance in cotton (Gossypium spp.). New Phytol 223:1856–1872

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Murugesan A, Kumar A, Gunasekar A, Arumugam I, Eswaran K, Thangavel B, Thirugnanasambandan S (2016) Hsp70 and theta subunit of T complex protein, a response to salt stress in the halophyte Sesuvium Portulacastrum. J Bioinform Proteom Imaging Anal 2:116–124

    Google Scholar 

  • Muszynska A, Jarocka S, Kurczynska EU (2014) Plasma membrane and cell wall properties of an aspen hybrid (Populus tremula x tremuloides) parenchyma cells under the influence of salt stress. Acta Physiol Plant 36:1155–1165

    CAS  Google Scholar 

  • Nakayama T, Shinohara H, Tanaka M, Baba K, Ogawa-Ohnishi M, Matsubayashi Y (2017) A peptide hormone required for Casparian strip diffusion barrier formation in Arabidopsis roots. Science 355:284–286

    CAS  PubMed  Google Scholar 

  • Nakaminami K, Okamoto M, Higuchi-Takeuchi M, Yoshizumi T, Yamaguchi Y, Fukao Y, Shimizu M, Ohashi C, Tanaka M, Matsui M, Shinozaki K, Seki M, Hanada K (2018) AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants. PNAS 115:5810–5815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nam MH, Huh SM, Kim KM, Park WJ, Seo JB, Cho K, Kim DY, Kim BG, Yoon IS (2012) Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice. Proteome Sci 10:25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ngara R, Ndimba R, Borch-Jensen J, Jensen ON, Ndimba B (2012) Identification and profiling of salinity stress-responsive proteins in sorghum bicolor seedlings. J Proteom 75:4139–4150

    CAS  Google Scholar 

  • Nohzadeh MS, Habibi RM, Heidari M, Salekdeh GH (2007) Proteomics reveals new salt responsive proteins associated with rice plasma membrane. Biosci Biotechnol Biochem 71:2144–2154

    Google Scholar 

  • Nveawiah-Yoho P, Zhou J, Palmer M, Sauve R, Zhou S (2013) Identification of proteins for salt tolerance using a comparative proteomics analysis of tomato accessions with contrasting salt tolerance. J Amer Soc Hort Sci 138:382–394

    Google Scholar 

  • Obembe OO, Jacobsen E, Vincken JP, Visser RGF (2009) Diferential expression of cellulose synthase (CesA) gene transcripts in potato as revealed by QRT-PCR. Plant Physiol Biochem 47:1116–1118

    CAS  PubMed  Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2013) Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot 64:445–458

    CAS  PubMed  Google Scholar 

  • Palin R, Geitmann A (2012) The role of pectin in plant morphogenesis. Biosystems 109:397–402

    CAS  PubMed  Google Scholar 

  • Pang Q, Chen S, Dai S, Wang Y, Chen Y, Yan X (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9:2584–2599

    CAS  PubMed  Google Scholar 

  • Pareek A, Mishra D, Rathi D, Verma JK, Chakraborty S, Chakraborty N (2021) The small heat shock proteins, chaperonin 10, in plants: an evolutionary view and emerging functional diversity. Environ Exp Bot 182:104323

    CAS  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22:4056–4075

    CAS  Google Scholar 

  • Park SC, Kim YH, Jeong JC, Kim CY, Lee HS, Bang JW, Kwak SS (2011) Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic- and salt stress-tolerance of transgenic calli. Planta 233:621–634

    CAS  PubMed  Google Scholar 

  • Park YC, Lim SD, Moon J, Jang CS (2019) A rice really interesting new gene H2-type E3 ligase, OsSIRH2-14, enhances salinity tolerance via ubiquitin/26S proteasome-mediated degradation of salt-related proteins. Plant Cell Environ 42:3061–3076

    CAS  PubMed  Google Scholar 

  • Patankar HV, Al-Harrasi I, AlKharusi L, Jana GA, Al-Yahyai R, Sunkar R, Yaish MW (2019) Overexpression of a metallothionein 2A gene from date palm confers abiotic stress tolerance to yeast and Arabidopsis thaliana. Int J Mol Sci 20:2871

    CAS  PubMed Central  Google Scholar 

  • Patel JS, Selvaraj V, Gunupuru LR, Kharwar RN, Sarma BK (2020) Plant G-protein signaling cascade and host defense. 3 Biotech 10:219

    PubMed  PubMed Central  Google Scholar 

  • Peng ZY, Wang MC, Li F, Lv HJ, Li CL, Xia GM (2009) A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteom 8:2676–2686

    CAS  Google Scholar 

  • Piao HL, Lim JH, Kim SJ, Cheong GW, Hwang I (2001) Constitutive overexpression of AtGSK1 induces NaCl responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis. Plant J 27:305–314

    CAS  PubMed  Google Scholar 

  • Prasad KVSK, Xing X, Reddy ASN (2018) Vascular plant one-zinc-finger (VOZ) transcription factors are positive regulators of salt tolerance in Arabidopsis. Front Plant Sci 19:3731

    Google Scholar 

  • Puranik S, Bahadur RP, Srivastava PS, Prasad M (2011) Molecular cloning and characterization of a membrane associated NAC family gene, SiNAC from foxtail millet [Setaria italica (L.) P. Beauv.]. Mol Biotechnol 49:138–150

    CAS  PubMed  Google Scholar 

  • Qiao-fang X, Xin-guo M, Yi-xue W, Jing-yi W, Ya-jun X, Rui-lian J (2018) A wheat gene TaSAP17-D encoding an AN1/AN1 zinc finger protein improves salt stress tolerance in transgenic Arabidopsis. Integr Plant Biol 17:507–516

    Google Scholar 

  • Qiu S, Ma N, Che S, Wang Y, Peng X, Zang G, Wang G, Huang J (2014) Repression of OsEXPA3 expression leads to root system growth suppression in rice. Crop Sci 65:2201–2213

    Google Scholar 

  • Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Sheng M, Chen S, Pardo JM, Guo Y (2007) SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19:1415–1431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman MA, Alam I, Kim Y, Ahn N, Heo S, Lee D, Liu G, Lee B (2015) Screening for salt-responsive proteins in two contrasting alfalfa cultivars using a comparative proteome approach. Plant Physiol Biochem 89:112–122

    CAS  PubMed  Google Scholar 

  • Ramakrishna C, Singh S, Raghavendrarao S, Padaria JC, Mohanty S, Sharma TR, Solanke AU (2018) The membrane tethered transcription factor EcbZIP17 from finger millet promotes plant growth and enhances tolerance to abiotic stresses. Sci Rep 8:2148

    PubMed  PubMed Central  Google Scholar 

  • Rasouli F, Kiani-Pouya A, Li L, Zhang H, Chen Z, Hedrich R, Wilson R, Shabala S (2020) Sugar beet (Beta vulgaris) guard cells responses to salinity stress: a proteomic analysis. Int J Mol Sci 21:2331

    CAS  PubMed Central  Google Scholar 

  • Riahi J, Amri B, Chibani F, Azri W, Mejri S, Bennani L, Zoghlami N, Matros A, Mock HP, Ghorbel A, Jardak R (2019) Comparative analyses of albumin/globulin grain proteome fraction in differentially salt-tolerant Tunisian barley landraces reveals genotype-specific and defined abundant proteins. Plant Biol 21:652–661

    CAS  PubMed  Google Scholar 

  • Rospert S, Looser R, Dubaquie Y, Matouschek A, Glick BS, Schatz G (1996) Hsp60-independent protein folding in the matrix of yeast mitochondria. EMBO J 15:764–774

  • Roveda-Hoyos G, Fonseca-Moreno LP (2011) Proteomics: a tool for the study of plant response to abiotic stress. Agron Colomb 29:221–230

    Google Scholar 

  • Salama KHA, Mansour MMF (2015) Choline priming-induced plasma membrane lipid alterations contributed to improved wheat salt tolerance. Acta Physiol Plant 37:170

    Google Scholar 

  • Salama KHA, Mansour MMF, Al-Malawi HA (2015) Glycinebetaine priming improves salt tolerance of wheat. Biologia 70:1334–1339

    CAS  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crops Res 76:199–219

  • Samuga A, Joshi CP (2004) Diferential expression patterns of two new primary cell wall-related cellulose synthase cDNAs, PtrCesA6 and PtrCesA7 from aspen trees. Gene 334:73–82

    CAS  PubMed  Google Scholar 

  • Sankari M, Hridya H, Sneha P, Doss CGP, Christopher JG, Mathew J, Zayed H, Ramamoorthy S (2019) Implication of salt stress induces changes in pigment production, antioxidant enzyme activity, and qRT-PCR expression of genes involved in the biosynthetic pathway of Bixa orellana L. Funct Integr Genom 19:565–574

    CAS  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Ann Rev Plant Biol 52:627–658

    CAS  Google Scholar 

  • Sharma S, Villamor JG, Verslues PE (2011) Essential role of tissue specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol 157:292–304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Zhu JK (2002) Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol Biol 50:543–550

    CAS  PubMed  Google Scholar 

  • Shokri-Gharelo R, Noparvar PM (2018) Molecular response of canola to salt stress: insights on tolerance mechanisms. Peer J 6:e4822

    PubMed  PubMed Central  Google Scholar 

  • Skorupa M, Gołębiewski M, Kurnik K, Niedojadło J, Kęsy J, Klamkowski K, Wójcik K, Treder W, Tretyn A, Tyburski T (2019) Salt stress vs. salt shock—the case of sugar beet and its halophytic ancestor. BMC Plant Biol 19:57

    PubMed  PubMed Central  Google Scholar 

  • Skorupa M, Szczepanek J, Mazur J, Domagalski K, Tretyn A, Tyburski J (2021) Salt stress and salt shock differently affect DNA methylation in salt-responsive genes in sugar beet and its wild, halophytic ancestor. PLoS ONE 16:e0251675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sobhanian H, Razavizadeh R, Nanjo Y, Ehsanpour AA, Jazii FR, Motamed N, Komatsu S (2010) Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci 8:19

    PubMed  PubMed Central  Google Scholar 

  • Sobhanian H, Aghaei K, Komatsu S (2011) Changes in the plant proteome resulting from salt stress: toward the creation of salt-tolerant crops? J Proteom 7:1323–1337

    Google Scholar 

  • Soda N, Sharan A, Gupta BK, Singla-Pareek SL, Pareek A (2016) Evidence for nuclear interaction of a cytoskeleton protein (OsIFL) with metallothionein and its role in salinity stress tolerance. Sci Rep 6:34762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78

    CAS  PubMed  Google Scholar 

  • Srivastava S, Rahman MH, Shah S, Kav NN (2006) Constitutive expression of the pea ABA-responsive 17 (ABR17) cDNA confers multiple stress tolerance in Arabidopsis thaliana. Plant Biotechnol J 4:529–549

    CAS  PubMed  Google Scholar 

  • Stines AP, Naylor DJ, Høj PB, van Heeswijck R (1999) Proline accumulation in developing grapevine fruit occurs independently of changes in the levels of Δ1 -pyrroline-5-carboxylate synthetase mRNA or protein. Plant Physiol 120:923–931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian S, Souleimanov A, Smith DL (2016) Proteomic studies on the effects of lipo-chitooligosaccharide and thuricin 17 under unstressed and salt stressed conditions in Arabidopsis thaliana. Front Plant Sci 7:1314

    PubMed  PubMed Central  Google Scholar 

  • Szymanska KP, Polkowska-Kowalczyk L, Lichocka M, Maszkowska J, Dobrowolska G (2019) SNF1-related protein kinases SnRK2.4 and SnRK2.10 modulate ROS homeostasis in plant response to salt stress. Int J Mol Sci 20:143

    PubMed Central  Google Scholar 

  • Tada Y, Kashimura T (2009) Proteomic analysis of salt-responsive proteins in the mangrove plant. Bruguiera Gymnorhiza Plant Cell Physiol 50:439–446

    CAS  PubMed  Google Scholar 

  • Takahashi Y, Zhang J, Hsu P, Ceciliato PHO, Zhang L, Dubeaux G, Munemasa S, Ge C, Zhao Y, Hauser F, Schroeder JI (2020) MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response. Nat Commun 11:12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Page M (2013) Transcription factor AtbZIP60 regulates expression of Ca2+-dependent protein kinase genes in transgenic cells. Mol Biol Rep 40:2723–2732

    CAS  PubMed  Google Scholar 

  • Tang Z, Cao X, Zhang Y, Jiang J, Qiao D, Xu H (2020) Two splice variants of the DsMEK1 mitogen-activated protein kinase kinase (MAPKK) are involved in salt stress regulation in Dunaliella salina in different ways. Biotechnol Biofuels 13:147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804

    CAS  PubMed  Google Scholar 

  • Tanveer M, Shabala S (2018) Targeting redox regulatory mechanisms for salinity stress tolerance in crops. In: Kumar V, Wani S, Suprasanna P, Tran LS (eds) Salinity responses and tolerance in plants, vol 1. Springer, Cham, pp 213–234

    Google Scholar 

  • Thukral L, Sengupta D, Ramkumar A, Murthy D, Agrawal N, Gokhale RS (2015) The molecular mechanism underlying recruitment and insertion of lipid-anchored LC3 protein into membranes. Biophys J 109:2067–2078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Udawat P, Jha RK, Sinha D, Mishra A, Jha B (2016) Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP) mitigates salt and osmotic stress in transgenic tobacco plants. Front Plant Sci 7:518

    PubMed  PubMed Central  Google Scholar 

  • Ueda A, Shi W, Sanmiya K, Shono M, Takabe T (2001) Functional analysis of salt-inducible proline transporter of barley roots. Plant Cell Physiol 42:1282–1289

    CAS  PubMed  Google Scholar 

  • Vaid N, Pandey P, Srivastava VK, Tuteja N (2015) Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes. Plant Mol Biol 88:193–206

    CAS  PubMed  Google Scholar 

  • Volkov V (2015) Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Front Plant Sci 6:873

    PubMed  PubMed Central  Google Scholar 

  • Wang B, Luttge U, Ratajczak R (2001) Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot 52:2355–2365

    CAS  PubMed  Google Scholar 

  • Wang MC, Peng ZY, Li CL, Li F, Liu C, Xia GM (2008a) Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8:1470–1489

    CAS  PubMed  Google Scholar 

  • Wang X, Yang P, Gao Q, Liu X, Kuang T, Shen S, He Y (2008b) Proteomic analysis of the response to high-salinity stress in Physcomitrella patens. Planta 228:167–177

    CAS  PubMed  Google Scholar 

  • Wang XC, Fan PX, Song HM, Chen XY, Li XF, Li YX (2009) Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. J Proteome Res 8:3331–3345

    CAS  PubMed  Google Scholar 

  • Wang L, Liu X, Liang M, Tan F, Liang W, Chen Y, Lin Y, Huang L, Xing J, Chen W (2014) Proteomic analysis of salt-responsive proteins in the leaves of mangrove Kandelia candel during short-term stress. PLoS ONE 9:e83141

    PubMed  PubMed Central  Google Scholar 

  • Wang F, Chen H, Li Q, Wei W, Li W, Zhang W, Ma B, Bi Y, Lai Y, Liu X, Man W, Zhang J, Chen S (2015) GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. Plant J 83:224–236

    CAS  PubMed  Google Scholar 

  • Wang J, Yao L, Li B, Meng Y, Ma X, Lai Y, Si E, Ren P, Yang K, Shang X, Wang H (2016a) Comparative proteomic analysis of cultured suspension cells of the halophyte Halogeton glomeratus by iTRAQ provides insights into response mechanisms to salt stress. Front Plant Sci 7:110

    PubMed  PubMed Central  Google Scholar 

  • Wang T, McFarlane HE, Persson S (2016b) The impact of abiotic factors on cellulose synthesis. J Exp Bot 67:543–555

    CAS  PubMed  Google Scholar 

  • Wang J, Liu S, Li C, Wang T, Zhang P, Chen K (2017a) PnLRR-RLK27, a novel leucine-rich repeats receptor-like protein kinase from the Antarctic moss Pohlia nutans, positively regulates salinity and oxidation-stress tolerance. PLoS ONE 12:e0172869

    PubMed  PubMed Central  Google Scholar 

  • Wang G, Bi A, Amombo E, Li H, Zhang L, Cheng C, Hu T, Fu J (2017b) Exogenous calcium enhances the photosystem II photochemistry response in salt stressed tall fescue. Front Plant Sci 8:2032

    PubMed  PubMed Central  Google Scholar 

  • Wang T, Chen Y, Zhang M, Chen J, Liu J, Han H, Hua X (2017c) Arabidopsis AMINO ACID PERMEASE1 contributes to salt stress-induced proline uptake from exogenous sources. Front Plant Sci 8:2182

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cong Y, Wang Y, Guo Z, Yue J, Xing Z, Gao X, Chai X (2019a) Identification of early salinity stress-responsive proteins in Dunaliella salina by isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analysis. Int J Mol Sci 20:599

    CAS  PubMed Central  Google Scholar 

  • Wang Y, Yan H, Qiu Z, Hu B, Zeng B, Zhong C, Fan C (2019b) Comprehensive analysis of SnRK gene family and their responses to salt stress in Eucalyptus grandis. Int J Mol Sci 20:2786

    CAS  PubMed Central  Google Scholar 

  • Wei Y, Xu Y, Lu P, Wang X, Li Z, Cai X, Zhou Z, Wang Y, Zhang Z, Lin Z, Liu F, Wang K (2017) Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis. PLoS ONE 12:0178313

    Google Scholar 

  • Wei Z, Shi X, Wei F, Fan Z, Mei L, Tian B, Shi CG, Shi G (2019) The cotton endocycle-involved protein SPO11-3 functions in salt stress via integrating leaf stomatal response, ROS scavenging and root growth. Physiol Plant 167:127–141

    CAS  PubMed  Google Scholar 

  • Witzel K, Weidner A, Surabhi G, Borner A, Mock H (2009) Salt stress- induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J Exp Bot 60:3545–3557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Witzel K, Weidner A, Surabhi GK, Varshney RK, Kunze G, Buck-Sorlin GH, Börner A, Mock HP (2010) Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination. Plant Cell Environ 33:211–222

  • Wu H, Zhang X, Giraldo JP, Shabala S (2018) It is not all about sodium: revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant Soil 431:1–17

    CAS  Google Scholar 

  • Wu J, Zhang J, Li X, Liu J, Niu Z, Wang L (2019) An overexpression of the AP2/ERF transcription factor from Iris typhifolia in Arabidopsis thaliana confers tolerance to salt stress. Biol Plant 63:776–784

    CAS  Google Scholar 

  • Xiang D, Man L, Cao S, Liu P, Li Z, Wang X (2020) Ectopic expression of an oat SnRK2 gene, AsSnRK2D, enhances dehydration and salinity tolerance in tobacco by modulating the expression of stress-related genes. Braz J Bot 43:429–446

    Google Scholar 

  • Xiong L, Lee H, Ishitani M, Zhu JK (2002) Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 Locus in Arabidopsis. J Biol Chem 277:8588–8596

    CAS  PubMed  Google Scholar 

  • Xiong J, Sun Y, Yang Q, Tian H, Zhang H, Liu Y, Chen M (2017) Proteomic analysis of early salt stress responsive proteins in alfalfa roots and shoots. Proteome Sci 15:19

    PubMed  PubMed Central  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Raza Q, Xu L, He X, Huang Y, Yi J, Zhang D, Shao H-B, Ma H, Ali Z (2018a) GmWRKY49, a salt-responsive nuclear protein, improved root length and governed better salinity tolerance in transgenic Arabidopsis. Front Plant Sci 9:809

    PubMed  PubMed Central  Google Scholar 

  • Xu Y, Zheng X, Song Y, Zhu L, Yu Z, Gan L, Zhou S, Liu H, Wen F, Zhu C (2018b) NtLTP4, a lipid transfer protein that enhances salt and drought stresses tolerance in Nicotiana tabacum. Sci Rep 8:8873

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217:523–539

    CAS  PubMed  Google Scholar 

  • Yang Q, Chen ZX, Yin H, Li X, Xin X, Hong X, Zhu J, Gong Z (2009) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31

    CAS  PubMed  Google Scholar 

  • Yang G, Wei Q, Huang H, Xia J (2020) Amino acid transporters in plant cells: a brief review. Plants 9:967

    CAS  PubMed Central  Google Scholar 

  • Yao Y, Zhang X, Wang N, Cui Y, Zhang L, Fan S (2020) Transcriptome analysis of salt stress response in halophyte Atriplex centralasiatica leaves. Acta Physiol Plant 42:3

    CAS  Google Scholar 

  • Yarra R, Kirti PB (2019) Expressing class I wheat NHX (TaNHX2) gene in eggplant (Solanum melongena L.) improves plant performance under saline condition. Funct Integr Genom 19:541–554

    CAS  Google Scholar 

  • Ye Y, Ding Y, Jiang Q, Wang F, Sun J, Zhu C (2017) The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants. Plant Cell Rep 36:235–242

    CAS  PubMed  Google Scholar 

  • Yeh JI, Chinte U, Du S (2008) Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism. PNAS 105:3280–3285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin J, Yi H, Chen X, Wang J (2019) Post-translational modifications of proteins have versatile roles in regulating plant immune responses. Int J Mol Sci 20:2807

    CAS  PubMed Central  Google Scholar 

  • Yong Y, Zhang Y, Lyu Y (2019) A stress-responsive NAC transcription factor from tiger lily (LlNAC2) interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis. Int J Mol Sci 20:3225

    CAS  PubMed Central  Google Scholar 

  • Yoon S, Bae E, Lee H, Choi Y, Han M, Choi H, Kang K, Park E (2018) Downregulation of stress-associated protein 1 (PagSAP1) increases salt stress tolerance in poplar (Populus alba × P. glandulosa). Trees 32:823–833

    CAS  Google Scholar 

  • Yu Y, Assmann SM (2015) The heterotrimeric G-protein β subunit, AGB1, plays multiple roles in the Arabidopsis salinity response. Plant Cell Environ 38:2143–2156

    CAS  PubMed  Google Scholar 

  • Yu L, Nie J, Cao C, Jin Y, Yan M (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol 188:762–773

    CAS  PubMed  Google Scholar 

  • Yu J, Chen S, Zhao Q, Wang T, Yang C, Diaz C, Sun G, Dai S (2011) Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. J Proteome Res 10:3852–3870

    CAS  PubMed  Google Scholar 

  • Yu C, Wu Q, Sun C, Tang M, Sun J, Zhan Y (2019) The phosphoproteomic response of okra (Abelmoschus esculentus L.) seedlings to salt stress. Int J Mol Sci 20:1262

    CAS  PubMed Central  Google Scholar 

  • Yu L, Liua Y, Peng Y, Zhu F, Xu F (2021) Overexpression of cyanoalanine synthase 1 improves germinability of tobacco seeds under salt stress conditions. Environ Exp Bot 182:104332

    CAS  Google Scholar 

  • Yuan F, Leng B, Zhang H, Wang X, Han G, Wang B (2019) A WD40-repeat protein from the recretohalophyte Limonium bicolor enhances trichome formation and salt tolerance in Arabidopsis. Front Plant Sci 10:1456

    PubMed  PubMed Central  Google Scholar 

  • Yuenyong W, Sirikantaramas S, Qu L, Buaboocha T (2019) Isocitrate lyase plays important roles in plant salt tolerance. BMC Plant Biol 19:472

    PubMed  PubMed Central  Google Scholar 

  • Zagorchev L, Kamenova P, Odjakova M (2014) The role of plant cell wall proteins in response to salt stress. Sci World J. https://doi.org/10.1155/2014/764089

    Article  Google Scholar 

  • Zarza X, Van Wijk R, Shabala L, Hunkeler A, Lefebvre M, Rodriguez-Villalón A, Shabala S, Tiburcio AF, Heilmann I, Munnik T (2020) Lipid kinases PIP5K7 and PIP5K9 are required for polyamine-triggered K+ efflux in Arabidopsis roots. Plant J. https://doi.org/10.1111/tpj.14932

    Article  PubMed  PubMed Central  Google Scholar 

  • Zelm E, Zhang Y, Testerink C (2020) Sal tolerance mechanisms of plants. Annu Rev Plant Biol 71:403–433

    PubMed  Google Scholar 

  • Zhang XX, Takano T, Liu SK (2006) Identification of a mitochondrial ATP synthase small subunit gene (RMtATP6) expressed in response to salts and osmotic stresses in rice (Oryza sativa L.). J Exp Bot 57:193–200

    CAS  PubMed  Google Scholar 

  • Zhang L, Tian LH, Zhao JF, Song Y, Zhang CJ, Guo Y (2009) Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol 149:916–928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhen J, Li Z, Kang D, Yang Y, Kong J (2011) Expression profile of early responsive genes under salt stress in upland cotton (Gossypium hirsutum L.). Plant Mol Biol Rep 29:626–637

  • Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S (2012a) Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11:49–67

    PubMed  Google Scholar 

  • Zhang M, Fang Y, Liang Z, Huang L (2012b) Enhanced expression of vacuolar H+-ATPase subunit E in the roots is associated with the adaptation of Broussonetia papyrifera to salt stress. PLoS ONE 7:48183

    Google Scholar 

  • Zhang LQ, Niu YD, Hao JF, Qi Z, Hasi A (2014) Salicornia europaea L. Na+/H+ antiporter gene improves salt tolerance in transgenic alfalfa (Medicago sativa L.). Genet Mol Res 13:5350–5360

    CAS  PubMed  Google Scholar 

  • Zhang S, Sun L, Dong X, Lu S, Tian W, Liu J (2016) Cellulose synthesis genes CESA6 and CSI1 are important for salt stress tolerance in Arabidopsis. J Integr Plant Biol 58:623–626

    PubMed  Google Scholar 

  • Zhang M, Chen Q, Zhou P, Zhang Q, Fang Y (2018) NaCl-induced changes in vacuolar H+-ATPase expression and vacuolar membrane lipid composition of two shrub willow clones differing in their response to salinity. Plant Growth Regul 86:445–453

    CAS  Google Scholar 

  • Zhang X, Cai H, Lu M, Wei Q, Xu L, Bo C, Ma Q, Zhao Y, Cheng B (2019a) A maize stress-responsive Di19 transcription factor, ZmDi19-1, confers enhanced tolerance to salt in transgenic Arabidopsis. Plant Cell Rep 38:1563–1578

    CAS  PubMed  Google Scholar 

  • Zhang X, Zheng W, Cao X, Cui X, Zhao S, Yu T, Chen J, Zhou Y, Chen M, Chai S, Xu Z, Ma Y (2019b) Genomic analysis of stress associated proteins in soybean and the role of GmSAP16 in abiotic stress responses in Arabidopsis and soybean. Front Plant Sci 10:1453

    PubMed  PubMed Central  Google Scholar 

  • Zhang X, Liu L, Chen B, Qin Z, Xiao Y, Zhang Y, Yao R, Liu H, Yang H (2019c) Progress in understanding the physiological and molecular responses of Populus to salt stress. Int J Mol Sci 20:1312

    CAS  PubMed Central  Google Scholar 

  • Zhang X, Wang T, Liu M, Sun W, Zhang W (2019d) Calmodulin-like gene MtCML40 is involved in salt tolerance by regulating MtHKTs transporters in Medicago truncatula. Environ Exp Bot 157:79–90

    Google Scholar 

  • Zhang Y, Wei M, Liu A, Zhou R, Li D, Dossa K, Wang L, Zhang Y, Gong H, Zhanga X, You J (2019e) Comparative proteomic analysis of two sesame genotypes with contrasting salinity tolerance in response to salt stress. J Proteom 201:73–83

    CAS  Google Scholar 

  • Zhao Q, Zhang H, Tai Wang T, Chen S, Dai S (2013) Proteomics-based investigation of salt-responsive mechanisms in plant roots. J Proteom 82:230–253

    CAS  Google Scholar 

  • Zhao Z, Li T, Peng X, Wu K, Yang S (2019a) Identification and characterization of tomato SWI3-like proteins: overexpression of SlSWIC increases the leaf size in transgenic Arabidopsis. Int J Mol Sci 20:5121

    CAS  PubMed Central  Google Scholar 

  • Zhao X, Bai X, Jiang C, Li Z (2019b) Phosphoproteomic analysis of two contrasting maize inbred lines provides insights into the mechanism of salt-stress tolerance. Int J Mol Sci 20:1886

    CAS  PubMed Central  Google Scholar 

  • Zhao Y, Liu M, He L, Li X, Wang F, Yan B, Wei J, Zhao C, Li Z, Xu J (2019c) A cytosolic NAD+-dependent GPDH from maize (ZmGPDH1) is involved in conferring salt and osmotic stress tolerance. BMC Plant Biol 19:16

    PubMed  PubMed Central  Google Scholar 

  • Zhao C, Zayed O, Zeng F, Liu C, Zhang L, Zhu P, Hsu C, Tuncil YE, Tao WA, Carpita NC, Zhu J (2019d) Arabinose biosynthesis is critical for salt stress tolerance in Arabidopsis. New Phytol 224:274–290

    CAS  PubMed  Google Scholar 

  • Zheng M, Liu X, Lin J, Liu X, Wang Z, Xin M, Yao Y, Peng H, Zhou D, Ni Z, Sun Q, Hu Z (2019) Histone acetyltransferase GCN5 contributes to cell wall integrity and salt stress tolerance by altering the expression of cellulose synthesis genes. Plant J 97:587–602

    CAS  PubMed  Google Scholar 

  • Zheng S, Liu S, Feng J, Wang W, Wang Y, Yu Q, Liao Y, Mo Y, Xu Z, Li L, Gao X, Jia X, Zhu J, Chen R (2021) Overexpression of a stress response membrane protein gene OsSMP1 enhances rice tolerance to salt, cold and heavy metal stress. Environ Exp Bot 182:104327

    CAS  Google Scholar 

  • Zhong M, Wang Y, Zhang Y, Shu S, Sun J, Guo S (2019) Overexpression of transglutaminase from cucumber in tobacco increases salt tolerance through regulation of photosynthesis. Front Plant Sci 20:894

    CAS  Google Scholar 

  • Zörb C, Schmitt S, Mühling KH (2010) Proteomic changes in maize roots after short-term adjustment to saline growth conditions. Proteomics 10:4441–4449

    PubMed  Google Scholar 

  • Zou HW, Tian XH, Ma GH, Li ZX (2013) Isolation and functional analysis of ZmLTP3, a homologue to Arabidopsis LTP3. Int J Mol Sci 14:5025–5035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Wang G, Li C, Li Q, Gao Y, Chen F, Xia G (2019) Maize Sep15 like functions in endoplasmic reticulum and reactive oxygen species homeostasis to promote salt and osmotic stress resistance. Plant Cell Environ 42:1486–1502

    CAS  PubMed  Google Scholar 

  • Zhu J, Fan Y, Shabala S, Li C, Lv C, Guo B, Xu R, Zhou M (2020a) Understanding mechanisms of salinity tolerance in barley by proteomic and biochemical analysis of near-isogenic lines. Int J Mol Sci 21:1516

    CAS  PubMed Central  Google Scholar 

  • Zhu J, Fan Y, Li C, Shabala S, Zhao C, Hong Y, Lv C, Guo B, Xu R, Zhou M (2020b) Candidate genes for salinity tolerance in barley revealed by RNA-seq analysis of near-isogenic lines. Plant Growth Reg 92:571–582

    CAS  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the assistance of Ms. Nada Mansour in preparing the manuscript figures. The authors apologize to the many colleagues whose work could not be cited because of space limitation.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MMFM proposed the idea of the review. MMFM and FH performed the literature search, data analysis, and drafted the manuscript. MMFM critically revised the review. Both authors agreed the publication.

Corresponding author

Correspondence to Mohamed Magdy F. Mansour.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, M.M.F., Hassan, F.A.S. How salt stress-responsive proteins regulate plant adaptation to saline conditions. Plant Mol Biol 108, 175–224 (2022). https://doi.org/10.1007/s11103-021-01232-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-021-01232-x

Keywords

Navigation