Skip to main content
Log in

Agrobacterium-mediated cassava transformation for the Asian elite variety KU50

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Cassava genetic transformation has mostly been reported for African cassava varieties, but not for Asian varieties. This is the first report of cassava transformation in Asian elite varieties using friable embryogenic calli.

Abstract

Agrobacterium-mediated cassava transformation via friable embryogenic calli (FEC) has enabled the robust production of transgenic cassava. So far, mostly the model cassava variety 60444 and African varieties have been transformed because of their good production and regeneration from embryogenic tissues. It is important to develop transformation methods for elite Asian cassava varieties to meet the changing needs in one of the world’s major cassava production areas. However, a suitable transformation method for the Asian elite variety Kasetsart 50 (KU50) has not been developed. Here, we report a transformation method for KU50, the cultivar with the highest planting area in Thailand and Vietnam. In cassava transformation, the preparation of FEC as the target tissue for transgene integration is a key step. FEC induction from KU50 was improved by using media with reduced nutrients and excess vitamin B1, and somatic embryo and plant regeneration optimized by manipulation of naphthalene acetic acid (NAA), and benzylamino purine (BAP). The transformation efficiency for KU50 was 22%, approximately half that of 60444 at 45%. Transcriptome analysis indicated that the expression of genes related to cell-wall loosening was upregulated in FEC from KU50 compared with 60444, indicating that cell-wall production and assembly were disproportionate in the Asian variety. The transformation system for KU50 reported here will contribute to the molecular breeding of cassava plants for Asian farmers using transgenic and genome-editing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The novel data generated in this study, including microarray data, has been deposited in the National Center for Biotechnology Information under the accession number GSE169685.

References

  • Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG, Medford JI, Orozco-Cárdenas ML, Tricoli DM, Van Eck J, Voytas DF, Walbot V, Wang K, Zhang ZJ, Stewart CN (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28:1510–1520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86:2273–2282

    Article  CAS  Google Scholar 

  • Barajas-Lopez JD, Tiwari A, Zarza X, Shaw MW, Pascual J, Punkkinen M, Bakowska JC, Munnik T, Fujii H (2020) Early response to dehydration 7 remodels cell membrane lipid composition during cold stress in arabidopsis. Plant Cell Physiol 62:139

    Google Scholar 

  • Bother R (1967) On sharpening Scheffe bounds. J Roy Stat Soc 29:110–114

    Google Scholar 

  • Born J, Pfeifer F (2019) Improved GFP variants to study gene expression in Haloarchaea. Front Microbiol 10:1200

    Article  PubMed  PubMed Central  Google Scholar 

  • Bull SE, Owiti JA, Niklaus M, Beeching JR, Gruissem W, Vanderschuren H (2009) Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava. Nat Protoc 4:1845–1854

    Article  CAS  PubMed  Google Scholar 

  • Bull SE, Ndunguru J, Gruissem W, Beeching JR, Vanderschuren H (2011) Cassava: constraints to production and the transfer of biotechnology to African laboratories. Plant Cell Rep 30:779–787

    Article  CAS  PubMed  Google Scholar 

  • Bull SE, Seung D, Chanez C, Mehta D, Kuon JE, Truernit E, Hochmuth A, Zurkirchen I, Zeeman SC, Gruissem W, Vanderschuren H (2018) Accelerated ex situ breeding of GBSS- and PTST1-edited cassava for modified starch. Sci Adv 4:6086

    Article  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  • Ceballos H, Iglesias CA, Pérez JC, Dixon AGO (2004) Cassava breeding: opportunities and challenges. Plant Mol Biol 56:503–516

    Article  CAS  PubMed  Google Scholar 

  • Chavarriaga-Aguirre P, Brand A, Medina A, Prías M, Escobar R, Martinez J, Díaz P, López C, Roca WM, Tohme J (2016) The potential of using biotechnology to improve cassava: a review. In Vitro Cell Dev Biol-Plant 52:461–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan RD, Beyene G, Kalyaeva M, Fauquet CM, Taylor N (2015) Improvements in Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz) for large-scale production of transgenic plants. Plant Cell Tiss Organ Cult 121:591–603

    Article  CAS  Google Scholar 

  • Chetty CC, Rossin CB, Gruissem W, Vanderschuren H, Rey ME (2013) Empowering biotechnology in southern Africa: establishment of a robust transformation platform for the production of transgenic industry-preferred cassava. N Biotechnol 25:136–143

    Article  CAS  Google Scholar 

  • Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of gene in planta. Plant Physiol 133:462–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driver JA, Kuniyuki AN (1984) In vitro propagation of Paradox walnut rootstock. Hortic Sci 19:507–509

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Funck D, Baumgarten L, Stift M, von Wirén N, Schönemann L (2020) Differential contribution of P5CS isoforms to stress tolerance in arabidopsis. Front Plant Sci 11:565134

    Article  PubMed  PubMed Central  Google Scholar 

  • Gresshoff P, Doy C (1974) Derivation of a haploid cell line from Vitis vinifera and the importance of the stage of meiotic development of the anthers for haploid culture of this and other genera. Z Pflanzenphysiol 73:132–141

    Article  Google Scholar 

  • Gyves EM, Picarella ME, Ruiu F, Silva J, Rouphael Y, Muleo R, Rugini E (2010) Inhibition of Agrobacterium tumefaciens growth by silver nitrate. Int J Plant Dev Biol 4:64–67

    Google Scholar 

  • Hood EG, Chilton WS, Chilton M-D, Fraley RT (1986) T-DNA and opine synthetic loci in tumors incited by Agrobacterium tumefaciens A281 on Soybean and Alfalfa plants. J Bacteriol 168:1283–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hummel AW, Chauhan RD, Cermak MAM, Vijayaraghavan A, Boyher A, Starker CG, Bart R, Voytas DF, Taylor NJ (2018) Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnol J 16:1275–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeuchi M, Sugimoto K, Iwase A (2013) Plant callus: mechanisms of induction and repression. Plant Cell 25:3159–3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji H, Wang Y, Cloix C, Li K, Jenkins GI, Wang S, Shang Z, Shi Y, Yang S, Li X (2015) The Arabidopsis RCC1 family protein TCF1 regulates freezing tolerance and cold acclimation through modulating lignin biosynthesis. PLoS Genet 11:e1005471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jolie RP, Duvetter T, Loey AMV, Hendrickx ME (2010) Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr Res 345:2583–2595

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy P, Vishal B, Ho WJ, Lok FCJ, Lee FSM, Kumar PP (2020) Regulation of a Cytochrome P450 Gene CYP94B1 by WRKY33 transcription factor controls apoplastic barrier formation in roots to confer salt tolerance. Plant Physiol 184:2199–2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Darley CP, Ongaro V, Fleming A, Schipper O, Baldauf SL, McQueen-Mason SJ (2002) Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol 128:854–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liners F, Gaspar T, Van Cutsem P (1994) Acetyl- and methyl-esterification of pectins of friable and compact sugar-beet calli: consequences for intercellular adhesion. Planta 192:545–556

    Article  CAS  Google Scholar 

  • Liu J, Zheng Q, Ma Q, Gadidasu KK, Zhang P (2011) Cassava genetic transformation and its application in breeding. J Integr Plant Biol 535:52–69

    Google Scholar 

  • Ma Q, Zhou W, Zhang P (2015) Transition from somatic embryo to friable embryogenic callus in cassava: dynamic changes in cellular structure, physiological status, and gene expression profiles. Front Plant Sci 6:824

    Article  PubMed  PubMed Central  Google Scholar 

  • Malik AI, Kongsil P, Nguyễn VA, Ou W, Sholihin SP, Sheela MN, Becerra López-Lavalle LA, Utsumi Y, Lu C, Kittipadakul P, Nguyễn HH, Ceballos H, Nguyễn TH, Selvaraj Gomez M, Aiemnaka P, Labarta R, Chen S, Amawan S, Sok S, Youabee L, Seki M, Tokunaga H, Wang W, Li K, Nguyễn HA, Nguyễn VĐ, Hàm LH, Ishitani M (2020) Cassava breeding and agronomy in Asia: 50 years of history and future directions. Breed Sci 70:145–166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog S (1962) A revised medium for rapid growth and bioassays with tabacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Ntui VO, Kong K, Khan RS, Igawa T, Janavi GJ, Rabindran R, Nakamura I, Mii M (2015) Resistance to Sri Lankan Cassava Mosaic Virus (SLCMV) in Genetically Engineered Cassava cv. KU50 through RNA Silencing. PLoS ONE 10:e0120551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nyaboga EN, Njiru JM, Tripathi L (2015) Factors influencing somatic embryogenesis, regeneration, and Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz) cultivar TME14. Front Plant Sci 6:411

    Article  PubMed  PubMed Central  Google Scholar 

  • Odipio J, Alicai T, Ingelbrecht I, Nusinow DA, Bart R, Taylor NJ (2017) Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Front Plant Sci 8:1780

    Article  PubMed  PubMed Central  Google Scholar 

  • Park J, Cui Y, Kang B-H (2015) AtPGL3 is an Arabidopsis BURP domain protein that is localized to the cell wall and promotes cell enlargement. Front Plant Sci 6:412

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters C, Li M, Narasimhan R, Roth M, Welti R, Wang X (2010) Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell 22:2642–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman HM, Nawaz MA, Shah ZH, Ludwig-Müller J, Chung G, Ahmad MQ, Yang SH, Lee SI (2018) Comparative genomic and transcriptomic analyses of Family-1 UDP glycosyltransferase in three Brassica species and Arabidopsis indicates stress-responsive regulation. Sci Rep 8:1875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rose JKC, Janet B, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435

    Article  CAS  PubMed  Google Scholar 

  • Saelim L, Phansiri S, Suksangpanomrung M, Netrphan S, Narangajavana J (2009) Evaluation of a morphological marker selection and excision system to generate marker-free transgenic cassava plants. Plant Cell Rep 28:445–455

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Tokunaga H, Utsumi C et al (2018) Advancement of Asian Cassava Molecular Breeding towards SDGs. Proceedings of the 18th Science Council of Asia (SCA) Conference Role of Science for Society: Strategies towards SDGs in Asia.http://www.scj.go.jp/en/sca/. Accessed Dec 2018.

  • Shigeyama T, Watanabe A, Tokuchi K, Toh S, Sakurai N, Shibuya N, Kawakami N (2016) α-Xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in Arabidopsis thaliana. J Exp Bot 67:5615–5629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Southern ED (2006) Southern blotting. Nat Protoc 1:518–525

    Article  CAS  PubMed  Google Scholar 

  • Takenaka Y, Nakano S, Tamoi M, Sakuda S, Fukamizo T (2009) Chitinase gene expression in response to environmental stresses in Arabidopsis thaliana: chitinase inhibitor allosamidin enhances stress tolerance. Biosci Biotechnol Biochem 73:1066–1071

    Article  CAS  PubMed  Google Scholar 

  • Taylor NJ, Edwards M, Kiernan RJ, Davey CDM, Blakesley D, Henshaw GG (1996) Development of friable embryogenic callus and embryogenic suspension culture systems in cassava (Manihot esculenta Crantz). Nat Biotechnol 14:726–730

    Article  CAS  PubMed  Google Scholar 

  • Taylor N, Gaitán-Solís E, Moll T, Trauterman B, Jones T, Pranjal A, Trembley C, Abernathy V, Corbin D, Fauquet CM (2012) A High-throughput platform for the production and analysis of transgenic cassava (Manihot esculenta) plants. Tropical Plant Biol 5:127–139

    Article  CAS  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi-Shinozaki K, Shinozaki K (2004) Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Commun 313:369–375

    Article  CAS  PubMed  Google Scholar 

  • Utsumi Y, Tanaka M, Kurotani A, Yoshida T, Mochida K, Matsui A, Ishitani M, Sraphet S, Whankaew S, Asvarak T, Narangajavana J, Triwitayakorn K, Sakurai T, Seki M (2016) Cassava (Manihot esculenta) transcriptome analysis in response to infection by the fungus Colletotrichum gloeosporioides using an oligonucleotide-DNA microarray. J Plant Res 129:711–726

    Article  CAS  PubMed  Google Scholar 

  • Utsumi Y, Utsumi C, Tanaka M, Ha VT, Matsui A, Takahashi S, Seki M (2017) Formation of friable embryogenic callus in cassava is enhanced under conditions of reduced nitrate, potassium and phosphate. PLoS ONE 12:e0180736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Willats WG, Orfila C, Limberg G, Buchholt HC, van Alebeek GJ, Voragen AG, Marcus SE, Christensen TM, Mikkelsen JD, Murray BS, Knox JP (2001) Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion. J Biol Chem 276:19404–19413

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Phansiri S, Puonti-Kaerlas J (2001) Improvement of cassava shoot organogenesis by the use of silver nitrate in vitro. Plant Cell Tissue Organ Cult 67:47–54

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the following funding: Strategic Funds for the Promotion of Science and Technology, Japan Society for the Promotion of Science (JSPS) Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers, EIG CONCERT-Japan 4th Call under the Strategic International Research Cooperative Program of the Japan Science and Technology Agency (JST, JPMJSC16C4), the Science and Technology Research Partnership for Sustainable Development (SATREPS) in collaboration with the Japan Science and Technology Agency (JST, JPMJSA1508) and the Japan International Cooperation Agency (JICA), and the grant from RIKEN Center for Sustainable Resource Science (CSRS). We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

YU and MS supervised the experiments, and YU, MS, and NJT wrote the manuscript. YU, CU, and MT performed the experiments and analyzed the data. ANV, NVD, and HT provided constructive comments. YU, MT, and ST performed transcriptome analysis. CU, YO, MT, and TTH managed the plants. The NJT provided critical suggestions on methodologies.

Corresponding authors

Correspondence to Yoshinori Utsumi or Motoaki Seki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10496 kb)

Supplementary file2 (XLSX 187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Utsumi, Y., Utsumi, C., Tanaka, M. et al. Agrobacterium-mediated cassava transformation for the Asian elite variety KU50. Plant Mol Biol 109, 271–282 (2022). https://doi.org/10.1007/s11103-021-01212-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-021-01212-1

Keywords

Navigation