Skip to main content
Log in

BcMAF2 activates BcTEM1 and represses flowering in Pak-choi (Brassica rapa ssp. chinensis)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

BcMAF2 plays a key role in flowering regulation by controlling BcTEM1, BcSOC1 and BCSPL15 in Pak-choi.

Abstract

Flowering is a key event in the life cycle of plants. Flowering time shows an extensive variation from different Pak-choi (Brassica rapa ssp. chinensis) cultivars. However, the regulation mechanism of flowering in Pak-choi remains rarely known. In this study, a systematic identification and functional analysis of a Pak-choi MADS Affecting Flowering (MAF) gene, BcMAF2, was carried out. BcMAF2 encoded a protein containing a conserved MADS-box domain, which was localized in the nucleus. QPCR analysis indicated that the expression of BcMAF2 was higher in the leaves and flowers. Overexpression of BcMAF2 in Arabidopsis showed that BcMAF2 repressed flowering, which was further confirmed by silencing endogenous BcMAF2 in Pak-choi. In addition, Tempranillo 1 (TEM1) expression was up-regulated and MAF2 expression was down-regulated in the BcMAF2-overexpressing Arabidopsis. The expression of BcMAF2 and BcTEM1 was down-regulated in BcMAF2-silencing Pak-choi plants. The yeast one-hybrid, dual luciferase and qPCR results revealed that BcMAF2 protein could directly bind to BcTEM1 promoter and activate its expression, which was not reported in Arabidopsis. Meanwhile, a self-inhibition was found in BcMAF2. Taken together, this work suggested that BcMAF2 could repress flowering by directly activating BcTEM1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AP3:

APETELA 3

CDF:

CYCLING DOF FACTOR

CO:

CONSTANS

FKF1:

FLAVIN KELCH F BOX 1

FLC:

Flowering Locus C

FT:

Flowering Locus T

GI:

GIGANTEA

LFY:

LEAFY

MAF:

MADS Affecting Flowering

PDS:

Phytoene desaturase

SOC1:

Suppressor of Overexpression of Constans 1

SPL:

Squamosa Promoter binding protein-Like

TEM1:

Tempranillo 1

References

  • Airoldi CA, Mckay M, Davies B (2015) MAF2 is regulated by temperature-dependent splicing and represses flowering at low temperatures in parallel with FLM. PLoS ONE 10(5):e0126516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alexandre CM, Hennig L (2008) FLC or not FLC: the other side of vernalization. J Exp Bot 59(6):1127–1135. https://doi.org/10.1093/jxb/ern1070

    Article  CAS  PubMed  Google Scholar 

  • Battey NH (2000) Aspects of seasonality. J Exp Bot 51(352):1769–1780

    Article  CAS  PubMed  Google Scholar 

  • Boss PK, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16(Suppl):S18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouché F, Lobet G, Tocquin P, Périlleux C (2015) FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res 44(Database issue):D1167–D1171

    PubMed  PubMed Central  Google Scholar 

  • Castillejo C, Pelaz S (2008) The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Curr Biol 18(17):1338–1343. https://doi.org/10.1016/j.cub.2008.1307.1075

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Deng W, Ying H, Helliwell CA, Taylor JM, Peacock WJ, Dennis ES (2011) FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proc Natl Acad Sci USA 108(16):6680–6685. https://doi.org/10.1073/pnas.1103175108

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong B, Deng Y, Wang H, Gao R, Stephen GK, Chen S, Jiang J, Chen F (2017) Gibberellic acid signaling is required to induce flowering of Chrysanthemums grown under both short and long days. Int J Mol Sci 18 (6)

  • Fornara F, Panigrahi KCS, Gissot L, Sauerbrunn N, Rühl M, Jarillo JA, Coupland G (2009) Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell 17(1):75–86

    Article  CAS  PubMed  Google Scholar 

  • Gu X, Le C, Wang Y, Li Z, Jiang D, Wang Y, He Y (2013) Arabidopsis FLC clade members form flowering-repressor complexes coordinating responses to endogenous and environmental cues. Nat Commun 4(4):1947

    Article  PubMed  CAS  Google Scholar 

  • Hamada H, Linghu Q, Nagira Y, Miki R, Taoka N, Imai R (2017) An in planta biolistic method for stable wheat transformation. Sci Rep 7(1):11443. https://doi.org/10.1038/s41598-017-11936-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong JK, Kim SY, Kim KS, Kwon SJ, Kim JS, Jin AK, Lee SI, Lee YH (2013) Overexpression of a Brassica rapa MADS-box gene, BrAGL20, induces early flowering time phenotypes in Brassica napus. Plant Biotechnol Rep 7(3):231–237

    Article  Google Scholar 

  • Huang F, Tang J, Hou X (2016) Molecular cloning and characterization of BcCSP1, a Pak-choi (Brassica rapa ssp. chinensis) cold shock protein gene highly co-expressed under ABA and cold stimulation. Acta Physiol Plant. https://doi.org/10.1007/s11738-015-2058-6

    Article  Google Scholar 

  • Huang F, Liu T, Hou X (2018) Isolation and functional characterization of a floral repressor, BcMAF1, from Pak-choi (Brassica rapa ssp. chinensis). Front Plant Sci 9:290

    Article  PubMed  PubMed Central  Google Scholar 

  • Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development 138(19):4117–4129

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Ohme-Takagi M (2009) A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol 50(5):970–975. https://doi.org/10.1093/pcp/pcp1048

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309(5732):293

    Article  CAS  PubMed  Google Scholar 

  • Jie W, Yao W, Lei W, Ma F, Tong W, Chen W, Rui B, Jiang C, Yang Y, Zhang J (2017) Overexpression of VpEIFP1, a novel F-box/Kelch-repeat protein from wild Chinese Vitis pseudoreticulata, confers higher tolerance to powdery mildew by inducing thioredoxin z proteolysis. Plant Sci 263:142–155

    Article  CAS  Google Scholar 

  • Jupin I (2013) A protocol for VIGS in Arabidopsis thaliana using a one-step TYMV-derived vector. Methods Mol Biol 975:197

    Article  CAS  PubMed  Google Scholar 

  • Kang SG, Jin JB, Piao HL, Pih KT, Jang HJ, Lim JH, Hwang I (1998) Molecular cloning of an Arabidopsis cDNA encoding a dynamin-like protein that is localized to plastids. Plant Mol Biol 38(3):437–447

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Park BS, Kwon SJ, Kim J, Lim MH, Park YD, Kim DY, Suh SC, Jin YM, Ahn JH (2007) Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L.: ssp. pekinensis). Plant Cell Rep 26(3):327–336

    Article  CAS  PubMed  Google Scholar 

  • Laurent C, Coral V, Seonghoe J, Fabio F, Qingzhi F, Iain S, Antonis G, Sara F, Lionel G, Colin T (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316(5827):1030–1033

    Article  CAS  Google Scholar 

  • Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61(9):2247–2254

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Wei D, Sun F, Yang X, Xiong A, Hou X (2014) Cloning and characterization of the nitrate transporter gene BraNRT2.1 in non-heading Chinese cabbage. Acta Physiol Plant 36(4):815–823

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11(5):949–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y, Andrés F, Kanehara K, Liu YC, Dörmann P, Coupland G (2014) Arabidopsis florigen FT binds to diurnally oscillating phospholipids that accelerate flowering. Nat Commun 5(5):3553

    Article  PubMed  CAS  Google Scholar 

  • Nasim Z, Fahim M, Ji HA (2017) Possible role of MADS AFFECTING FLOWERING 3 and B-BOX DOMAIN PROTEIN 19 in flowering time regulation of Arabidopsis mutants with defects in nonsense-mediated mRNA decay. Front Plant Sci 8:191

    Article  PubMed  PubMed Central  Google Scholar 

  • Nilsson O, Lee I, Blázquez MA, Weigel D (1998) Flowering-time genes modulate the response to LEAFY activity. Genetics 150(1):403–410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osborn TC, Kole C, Parkin IA, Sharpe AG, Kuiper M, Lydiate DJ, Trick M (1997) Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146(3):1123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osnato M, Castillejo C, Matias-Hernandez L, Pelaz S (2012) TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Nat Commun 3:808

    Article  PubMed  CAS  Google Scholar 

  • Parenicová L, De FS, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15(7):1538–1551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pflieger S, Blanchet S, Camborde L, Drugeon G, Rousseau A, Noizet M, Planchais S, Jupin I (2008) Efficient virus-induced gene silencing in Arabidopsis using a ‘one-step’ TYMV-derived vector. Plant J 56(4):678–690

    Article  CAS  PubMed  Google Scholar 

  • Posé D, Verhage L, Ott F, Yant L, Mathieu J, Angenent GC, Immink RG, Schmid M (2013) Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503(7476):414–417

    Article  PubMed  CAS  Google Scholar 

  • Putterill J, Laurie R, Macknight R (2004) It’s time to flower: the genetic control of flowering time. Bioessays 26(4):363–373

    Article  CAS  PubMed  Google Scholar 

  • Pylatuik JD, Lindsay DL, Davis AR, Bonham-Smith PC (2003) Isolation and characterization of a Brassica napus cDNA corresponding to a B-class floral development gene. J Exp Bot 54(391):2385–2387

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe OJ, Nadzan GC, Reuber TL, Riechmann JL (2001) Regulation of flowering in Arabidopsis by an FLC homologue. Plant Physiol 126(1):122–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol Chem 378(10):1079–1101

    CAS  PubMed  Google Scholar 

  • Robert LS, Robson F, Sharpe A, Lydiate D, Coupland G (1998) Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Mol Biol 37(5):763–772

    Article  CAS  PubMed  Google Scholar 

  • Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P (2008) The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 67(1–2):183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scortecci KC, Michaels SD, Amasino RM (2001) Identification of a MADS-box gene, FLOWERING LOCUS M, that represses flowering. Plant J 26(2):229–236

    Article  CAS  PubMed  Google Scholar 

  • Scortecci K, Michaels SD, Amasino RM (2003) Genetic interactions between FLM and other flowering-time genes in Arabidopsis thaliana. Plant Mol Biol 52(5):915–922

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Thong Z, Gong X, Shen Q, Gan Y, Yu H (2014) The putative PRC1 RING-finger protein AtRING1A regulates flowering through repressing MADS AFFECTING FLOWERING genes in Arabidopsis. Development 141(6):1303

    Article  CAS  PubMed  Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296(5566):285–289

    Article  CAS  PubMed  Google Scholar 

  • Song X, Li Y, Liu T, Duan W, Huang Z, Wang L, Tan H, Hou X (2014) Genes associated with agronomic traits in non-heading Chinese cabbage identified by expression profiling. BMC Plant Biol 14(1):71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tian C, Wan P, Sun S, Li J, Chen M (2004) Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Mol Biol 54(4):519–532

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Jiang L (2011) Transient expression and analysis of fluorescent reporter proteins in plant pollen tubes. Nat Protoc 6(4):419

    Article  CAS  PubMed  Google Scholar 

  • Wang S, He J, Cui Z, Li S (2007) Self-formed adaptor PCR: a simple and efficient method for chromosome walking. Appl Environ Microbiol 73(15):5048–5051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RN, Heckman JW, Somerville CR (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol 100(1):403–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao D, Zhao JJ, Hou XL, Basnet RK, Carpio DP, Zhang NW, Bucher J, Lin K, Cheng F, Wang XW (2013) The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks. J Exp Bot 64(14):4503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang X, Zhang W, Yu F, Tian J, Li D, Guo A (2011) Functional analysis of the two Brassica AP3 genes involved in apetalous and stamen carpelloid phenotypes. 6(6):e20930

  • Zhang JY, Qiao YS, Lv D, Gao ZH, Qu SC, Zhang Z (2012) Malus hupehensis NPR1 induces pathogenesis-related protein gene expression in transgenic tobacco. Plant Biol 14(s1):46–56

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Isabelle Jupin for providing the plasmid pTY-S. This work was supported by grants from Major Program of National Key Research and Development of China (2017YFD0101803), the Fundamental Research Funds for the Central Universities (Y0201700179), National Vegetable Industry Technology System (CARS-23-A-06), Jiangsu Modern Agriculture (vegetable) Industrial Technology System (SXGC[2017]273) and China Postdoctoral Science Foundation (2018M640493).

Author information

Authors and Affiliations

Authors

Contributions

Performed the experiments and wrote the paper: FYH. Manuscript revision and approval: FYH, TKL, JT and WKD. Contributed to the interpretation of the results and coordinated the study: XLH. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xilin Hou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2019_867_MOESM1_ESM.jpg

Fig. S1 (a) Identification of T3 transgenic Arabidopsis plants with PCR. PCR analysis of T3 transgenic Arabidopsis plants overexpressing empty vector (control) and BcMAF2 (#2, #5, #35, #55 and #65). The amplified fragments on the left were the BcMAF2 coding sequence without termination codon (576 bp), on the right were the BcMAF2 coding sequence without termination codon plus a part of GFP coding sequence (850 bp). (b) Western Blot detection of #35 and #55 plants. The GFP and Actin antibodies were used (above and below). (c) Fluorescence observation of #35 and #55 plants (JPG 875 KB)

Fig. S2 Expression analysis of AtGA3OX1 and AtGA3OX2 in the control, #35 and #55 plants (JPG 238 KB)

11103_2019_867_MOESM3_ESM.jpg

Fig. S3 The expression of BcTEM1 in different tissues of Pak-choi. Data shown were means ± SE of three independent experiments (JPG 125 KB)

11103_2019_867_MOESM4_ESM.jpg

Fig. S4 QPCR analysis of the transcript level of BcMAF2 during the process of vernalization in Pak-choi. Data shown were means ± SE of three independent experiments (JPG 142 KB)

Supplementary material 5 (XLSX 14 KB)

Supplementary material 6 (XLSX 10 KB)

Supplementary material 7 (XLSX 10 KB)

Supplementary material 8 (XLSX 10 KB)

Supplementary material 9 (XLSX 10 KB)

Supplementary material 10 (XLSX 10 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Liu, T., Tang, J. et al. BcMAF2 activates BcTEM1 and represses flowering in Pak-choi (Brassica rapa ssp. chinensis). Plant Mol Biol 100, 19–32 (2019). https://doi.org/10.1007/s11103-019-00867-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-019-00867-1

Keywords

Navigation