Skip to main content
Log in

Overexpression of a Brassica rapa MADS-box gene, BrAGL20, induces early flowering time phenotypes in Brassica napus

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

BrAGL20 (SOC1) containing MADS box, a floral integrator gene, was introduced into Brassica napus cv. “Youngsan” by Agrobacterium-mediated transformation. Constitutively overexpressed BrAGL20 under the CaMV 35S promoter induced early flowering time compared to the wild-type. These phenotypes were stably inherited through generations T2 and T3, regardless of planting season. The expression of the floral meristem identity genes LFY and AP1 seemed to appear rapidly in the shoot apex region of transgenic plants showing the early flowering time phenotype. These results suggest that overexpression of BrAGL20 can significantly affect the flowering time of B. napus, and regulation of floral integrator gene expression could be applied for adaptation of crops to local environments and climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amasino R (2004) Vernalization, competence, and the epigenetic memory of winter. Plant Cell 16:2553–2559

    Article  PubMed  CAS  Google Scholar 

  • Baurle I, Dean C (2006) The timing of development transitions in plants. Cell 125:655–664

    Article  PubMed  CAS  Google Scholar 

  • Bonhomme F, Kurz B, Melzer S, Bernier G, Jacqmard A (2000) Cytokinin and gibberellins activate SaMADS A, a gene apparently involved in regulation of the floral transition in Sinapis alba. Plant J 24:103–111

    Article  PubMed  CAS  Google Scholar 

  • Borner R, Kampmann G, Chandler J, Gleißner R, Wisman E, Apel K, Melzer S (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J 24:591–599

    Article  PubMed  CAS  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16:S18–S31

    Article  PubMed  CAS  Google Scholar 

  • Chandler J, Corbesier L, Spielmann P, Dettendorfer J, Stahl D, Apel K, Melzer S (2005) Modulating flowering time and prevention of pod shatter in oilseed rape. Mol Breed 15:87–94

    Article  Google Scholar 

  • Gregis V, Sessa A, Colombo L, Kater MM (2006) AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis. Plant Cell 18:1373–1382

    Article  PubMed  CAS  Google Scholar 

  • Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002) Antagonistic regulation of flowering time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J 21:4327–4337

    Article  PubMed  CAS  Google Scholar 

  • Hong JK, Kim JS, Kim JA, Lee SI, Lim MH, Park BS, Lee YH (2010) Identification and characterization of SHI family genes from Brassica rapa L. ssp. pekinensis. Genes Genom 32:309–317

    Article  CAS  Google Scholar 

  • Jung C, Műller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14:563–573

    Article  PubMed  CAS  Google Scholar 

  • Kim KW, Shin JH, Moon J, Kim M, Lee J, Park MC, Lee I (2003) The function of the flowering time gene AGL20 is conserved in crucifers. Mol Cells 16:136–141

    PubMed  CAS  Google Scholar 

  • Kim SY, Park BS, Kwon SJ, Kim J, Lim MH, Park YD, Kim DY, Suh SC, jin YM, Ahn JH, Lee YH (2007) Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Cell Rep 26:327–336

    Article  PubMed  CAS  Google Scholar 

  • Kim SY, Kim J, Kim JA, Park BS, Hong JK, Park YD, Lee YH (2011) Induction of Brassica rapa transgenic plant line showing delayed bolting and flowering time using overexpression of BrFLC genes. Korean J Int Agric 23:218–225

    Google Scholar 

  • Komeda Y (2004) Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol 55:521–535

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61:2247–2254

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Suh SS, Park E, cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Gene Dev 14:2366–2376

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Oh M, Park H, Lee I (2008) SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. Plant J 55:832–843

    Article  PubMed  CAS  Google Scholar 

  • Lee YH, Sohn SH, Suh SC, Yoon IS, Kim DY (2011) Effects of transgene organization and methylation on gene expression in transgenic plants. Korean J Int Agric 23:210–217

    Google Scholar 

  • Lewis RS, Kernodle SP (2009) A method for accelerated trait conversion in plant breeding. Theor Appl Genet 118:1499–1508

    Article  PubMed  Google Scholar 

  • Liang YC, Bae H-J, Kang S-H, Lee T, Kim MG, Kim YM, Ha S-H (2009) The Arabidopsis beta-carotene hydroxylase gene promoter for a strong constitutive expression of transgene. Plant Biotechnol Rep 3:325–331

    Article  Google Scholar 

  • Liang YC, Jeon Y-A, Lim S-H, Kim JK, Lee J-Y, Kim Y-M, Lee Y-H, Ha S-H (2011) Vascular-specific activity of the Arabidopsis carotenoid cleavage dioxygenase 7 gene promoter. Plant Cell Rep 30:973–980

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Chen H, Er HL, Soo HM, Kumar PP, Han JH, Liou YC, Yu H (2008) Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135:1481–1491

    Article  PubMed  CAS  Google Scholar 

  • Menzel G, Apel K, Melzer S (1996) Identification of two MADS box genes that are expressed in the apical meristem of the long-day plant Sinapis alba in transition to flowering. Plant J 9:399–408

    Article  PubMed  CAS  Google Scholar 

  • Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35:613–623

    Article  PubMed  CAS  Google Scholar 

  • Moon J, Lee H, Kim M, Lee I (2005) Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol 46:292–299

    Article  PubMed  CAS  Google Scholar 

  • Nocarova E, Opatrny Z, Fischer L (2010) Successive silencing of tandem reporter genes in potato (Solanum tuberosum) over 5 years of vegetative propagation. Ann Bot 106:565–572

    Article  PubMed  CAS  Google Scholar 

  • Onouchi H, Igeño MI, Périlleux C, Graves K, Coupland G (2000) Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 12:885–900

    PubMed  CAS  Google Scholar 

  • Parcy F (2005) Flowering: a time for integration. Int J Dev Biol 49:585–593

    Article  PubMed  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  PubMed  CAS  Google Scholar 

  • Seo E, Lee H, Jeon J, Park H, Kim J, Noh YS, Lee I (2009) Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. Plant Cell 21:3185–3197

    Article  PubMed  CAS  Google Scholar 

  • Shure M, Wesslers S, Federoff N (1983) Molecular identification of the waxy locus in maize. Cell 35:225–233

    Article  PubMed  CAS  Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296:285–289

    Article  PubMed  CAS  Google Scholar 

  • Tadege M, Sheldon CC, Helliwell CA, Stoutjesdijk P, Dennis ES, Peacock WJ (2001) Control of flowering time by FLC orthologues in Brassica napus. Plant J 28:545–553

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Newton RJ, Weidner DA (2007) Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine. J Exp Bot 58:545–554

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Xu Y, Tan EL, Kumar PP (2002) AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc Natl Acad Sci USA 99:16336–16341

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out with the support of “Research Program for Agricultural Biotechnology (PJ907049)”, National Academy of Agricultural Science, Rural Development Administration, Republic of Korea. J.K. Hong was supported by a 2012 Post-Doctoral Fellowship Program of National Academy of Agricultural Science, Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeon-Hee Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 675 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, J.K., Kim, SY., Kim, KS. et al. Overexpression of a Brassica rapa MADS-box gene, BrAGL20, induces early flowering time phenotypes in Brassica napus . Plant Biotechnol Rep 7, 231–237 (2013). https://doi.org/10.1007/s11816-012-0254-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-012-0254-z

Keywords

Navigation