Skip to main content
Log in

Cellular and molecular characteristics of pollen abortion in chrysanthemum cv. Kingfisher

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Microspore degeneration at the tetrad stage is associated with tapetum degeneration retardation. Some genes and proteins related to cell senescence and death are the key factors for pollen abortion.

Abstract

Chrysanthemum (Chrysanthemum morifolium) is a major floriculture crop in the world, but pollen contamination is an urgent problem to be solved in chrysanthemum production. C. morifolium ‘Kingfisher’ is a chrysanthemum cultivar that does not contain any pollen in mature anthers, thus it is a very important material for developing chrysanthemum without pollen contamination. However, the mechanism of its pollen abortion remains unclear. In this study, the cellular and molecular mechanisms of ‘Kingfisher’ pollen abortion were investigated using transmission electron microscopy, RNA sequencing, isobaric tags for relative and absolute quantitation, and bioinformatics. It was found that the meiosis of microspore mother cells was normal before the tetrad stage, the microspores began to degenerate at the tetrad stage, and no microspores were observed in the anthers after the tetrad stage. In addition, transcriptomic and proteomic analyses showed that some genes and proteins related to cell senescence and death were identified to be implicated in chrysanthemum pollen abortion. These results indicated that the tetrad stage was the main period of pollen abortion, and the genes and proteins related to cell senescence and death contributed to pollen abortion. These add to our understanding of chrysanthemum pollen abortion and will be helpful for development of flowers without pollen contamination in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

iTRAQ:

Isobaric tags for relative and absolute quantitation

TEM:

Transmission electron microscopy

FPKM:

Clean reads per kilo base per million

KEGG:

Kyoto encyclopedia of genes and genomes

COG:

Cluster of orthologous groups

DEG:

Differentially expressed gene

DEP:

Differentially expressed proteins

PCD:

Programmed cell death

References

  • Al Shweiki MR, Mönchgesang S, Majovsky P, Thieme D, Trutschel D, Hoehenwarter W (2017) Assessment of label-free quantification in discovery proteomics and impact of technological factors and natural variability of protein abundance. J Proteome Res 16(4):1410–1424

    Article  CAS  PubMed  Google Scholar 

  • An H, Yang ZH, Yi B, Wen J, Shen JX, Tu JX, Ma CZ, Fu TD (2014) Comparative transcript profiling of the fertile and sterile flower buds of pol CMS in B. napus. BMC Genom 15:258

    Article  CAS  Google Scholar 

  • Chen CM, Chen GJ, Cao BH, Lei JJ (2015) Transcriptional profiling analysis of genic male sterile–fertile Capsicum annuum reveal candidate genes for pollen development and maturation by RNA-seq technology. Plant Cell Tissue Organ Cult 122:465–476

    Article  CAS  Google Scholar 

  • Chen LF, Guan XY, Qin L, Zou T, Zhang YW, Wang J, Wang Y, Pan CT, Lu G (2016) Downregulation of the mitogen-activated protein kinase SlMAPK7 gene results in pollen abortion in tomato. Plant Cell Tissue Organ Cult 126:79–92

    Article  CAS  Google Scholar 

  • Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM (2010) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res 38(6):1767–1771

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Liang L, Sun X, Jia X, Gu C, Su J (2018) Ultrastructural abnormalities in pollen and anther wall development may lead to low pollen viability in jasmine (Jasminum sambac (L.) Aiton, Oleaceae). S Afr J Bot 114:69–77

    Article  Google Scholar 

  • Duan Y, Yao M, Meng LY, Shi XY, Qi Z, Ye JL, Yan PJ, Liu ZH, Song XY (2016) Abortion characters and fertility restoration of T763A, a male sterile line with T. timopheevi cytoplasm. Acta Agric Boreali-Sin 31(2):98–105

    Google Scholar 

  • Evans C, Noirel J, Ow SY, Salim M, Pereira-Medrano AG, Couto N, Pandhal J, Smith D, Pham TK, Karunakaran E, Zou X, Biggs CA, Wright PC (2012) An insight into iTRAQ: where do we stand now? Anal Bioanal Chem 404:1011–1027

    Article  CAS  PubMed  Google Scholar 

  • Fei JS, Tan SE, Zhang FJ, Hua LC, Liao Y, Fang WM, Chen FD, Teng NJ (2016) Morphological and physiological differences between dehiscent and indehiscent anthers of Chrysanthemum morifolium. J Plant Res 29:1069–1082

    Article  Google Scholar 

  • Ferguson AC, Pearce S, Band LR, Yang CY, Ferjentsikova I, King J, Yuan Z, Zhang DB, Wilson ZA (2017) Biphasic regulation of the transcription factor ABORTED MICROSPORES (AMS) is essential for tapetum and pollen development in Arabidopsis. New Phytol 213(2):778–790

    Article  CAS  PubMed  Google Scholar 

  • Gao LJ, Liu JL, Cheng S, Dai RG, Luo WH (2016) Analysis of nutritional components and contents on four kinds of pollens. Heilongjiang Anim Sci Vet Med 10:175–177

    Google Scholar 

  • Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5:1217–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez JF, Talle B, Wilson ZA (2015) Anther and pollen development: a conserved developmental pathway. J Integr Plant Biol 57(11):876–891

    Article  PubMed  PubMed Central  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong IP, Woo SO, Han SM, Kim SG, Jang HR, Lee MY, Choi YS, Kim HK, Lee ML (2016) Evaluation of nutritional potential of Amorpha fruticosa pollen collected by honey bees. J Apic 31(1):73–77

    Article  Google Scholar 

  • Hou XG, Guo Q, Wei WQ, Guo LL, Guo DL, Zhang L (2018) Screening of genes related to early and late flowering in tree peony based on bulked segregant RNA sequencing and verification by quantitative real-time PCR. Molecules 23(3):689

    Article  CAS  PubMed Central  Google Scholar 

  • Huang W, Ji JJ, Li C, Li GQ, Yin CC, Chai WG, Gong ZH (2015) Novel genetic male sterility developed in (Capsicum annuum x C. chinense) x C. pubescens and induced by HNO2 showing Mendelian inheritance and aborted at telophase of microspore mother cell stage. Genet Mol Res 14(2):3318–3329

    Article  CAS  PubMed  Google Scholar 

  • Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. ISBM: 138–148

  • Jia SR, Wang F, Shi L, Yuan QH, Liu WG, Liao YL, Li SG, Jin WJ, Peng HP (2007) Transgene flow to hybrid rice and its male-sterile lines. Transgenic Res 16(4):491–501

    Article  CAS  PubMed  Google Scholar 

  • Jiang JX, Lv ML, Liang Y, Ma ZM, Cao JS (2014) Identification of novel and conserved miRNAs involved in pollen development in Brassica campestris ssp. chinensis by high-throughput sequencing and degradome analysis. BMC Genom 15:146

    Article  CAS  Google Scholar 

  • Jiang HX, Yang LT, Qi YP, Lu YB, Huang ZR, Chen LS (2015) Root iTRAQ protein profile analysis of two Citrus species differing in aluminum-tolerance in response to long-term aluminum-toxicity. BMC Genom 16(1):949

    Article  CAS  Google Scholar 

  • Kaul MLR (1988) Male sterility in higher plants. Heidelberg, Berlin

    Book  Google Scholar 

  • Ko SS, Li MJ, Lin YJ, Hsing HX, Yang TT, Chen TK, Jhong CM, Ku MS (2017) Tightly controlled expression of bHLH142 is essential for timely tapetal programmed cell death and pollen development in rice. Front Plant Sci 8:1258

    Article  PubMed  PubMed Central  Google Scholar 

  • Li FT, Chen SM, Chen FD, Teng NJ, Fang WM, Zhang F, Deng YM (2010) Anther wall development, microsporogenesis and microgametogenesis in male fertile and sterile chrysanthemum (Chrysanthemum morifolium Ramat., Asteraceae). Sci Hortic 126:261–267

    Article  CAS  Google Scholar 

  • Li JJ, Ding XL, Han SH, He TT, Zhang H, Yang LS, Yang SP, Gai JY (2016) Differential proteomics analysis to identify proteins and pathways associated with male sterility of soybean using iTRAQ-based strategy. J Proteom 138:72–82

    Article  CAS  Google Scholar 

  • Liu J, Pang CY, Wei HL, Song MZ, Meng YY, Ma JH, Fan SL, Yu SX (2015a) Data for proteomic profiling of anthers from a photosensitive male sterile mutant and wild-type cotton (Gossypium hirsutum L.). Data Brief 4:500–509

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Xiang RY, Wang WM, Mei DS, Li YC, Mason AS, Fu L, Hu Q (2015b) Cytological and molecular analysis of Nsa CMS in Brassica napus L. Euphytica 206(2):279–286

    Article  CAS  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-SEq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  • Omidvar V, Mohorianu I, Dalmay T, Fellner M (2015) Identification of miRNAs with potential roles in regulation of anther development and male sterility in 7B-1 male-sterile tomato mutant. BMC Genom 16:878

    Article  CAS  Google Scholar 

  • Perez-Prat E, van Lookeren Campagne MM (2002) Hybrid seed production and the challenge of propagating male-sterile plants. Trends Plant Sci 7(5):199–203

    Article  CAS  PubMed  Google Scholar 

  • Pertea G, Huang XQ, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19(5):651–652

    Article  CAS  PubMed  Google Scholar 

  • Qi YX, Liu YB, Rong WH (2011) RNA-Seq and its applications: a new technology for transcriptomics. Hereditas 33(11):1191–1202

    Article  CAS  PubMed  Google Scholar 

  • Ranjan R, Khurana R, Malik N, Badoni S, Parida SK, Kapoor S, Tyagi AK (2017) bHLH142 regulates various metabolic pathway-related genes to affect pollen development and anther dehiscence in rice. Sci Rep 7:43397

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren LP, Sun J, Chen SM, Gao JJ, Dong B, Liu YN, Xia XL, Wang YJ, Liao Y, Teng NJ, Fang WM, Guan ZY, Chen FD, Jiang JF (2014) A transcriptomic analysis of Chrysanthemum nankingense provides insights into the basis of low temperature tolerance. BMC Genom 15:844

    Article  CAS  Google Scholar 

  • Rieu I, Twell D, Firon N (2017) Pollen development at high temperature: from acclimation to collapse. Plant Physiol 173(4):1967–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16:46–60

    Article  Google Scholar 

  • Sheoran IS, Sawhney VK (2010) Proteome analysis of the normal and Ogura (ogu) CMS anthers of Brassica napus to identify proteins associated with male sterility. Botany 88:217–230

    Article  CAS  Google Scholar 

  • Sheoran IS, Ross ARS, Olson DJH, Sawhney VK (2009) Differential expression of proteins in the wild type and 7B-1 male-sterile mutant anthers of tomato (Solanum lycopersicum): a proteomic analysis. J Proteom 71:624–636

    Article  CAS  Google Scholar 

  • Song AP, Gao TW, Li PL, Chen SM, Guan ZY, Wu D, Xin JJ, Fan QQ, Zhao KK, Chen FD (2016) Transcriptome-wide identification and expression profiling of the DOF transcription factor gene family in Chrysanthemum morifolium. Front Plant Sci 7:199

    PubMed  PubMed Central  Google Scholar 

  • Sun QP, Hu CF, Hu J, Li SQ, Zhu YG (2009) Quantitative proteomic analysis of CMS-related changes in Honglian CMS rice anther. Protein J 28:341–348

    Article  CAS  PubMed  Google Scholar 

  • Tang ZH, Zhang LP, Xu CG, Yuan SH, Zhang FT, Zheng YL, Zhao CP (2012) Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. Plant Physiol 159:721–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XG, Fang WM, Chen FD, Teng NJ (2013) Determination of pollen quantity and features of pollen dispersal for 41 spray cut chrysanthemum cultivars. Acta Hortic Sin 40(4):703–712

    Google Scholar 

  • Wang XG, Wang HB, Chen FD, Jiang JF, Fang WM, Liao Y, Teng NJ (2014) Factors affecting quantity of pollen dispersal of spray cut chrysanthemum (Chrysanthemum morifolium). BMC Plant Biol 14:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang SP, Zhang GS, Zhang YX, Song QL, Chen Z, Wang JS, Guo JL, Niu N, Wang JW, Ma SC (2015) Comparative studies of mitochondrial proteomics reveal an intimate protein network of male sterility in wheat (Triticum aestivum L.). J Exp Bot 66(20):6191–6203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen L, Liu G, Li SQ, Wan CX, Tao J, Xu KY, Zhang ZJ, Zhu YG (2007) Proteomic analysis of anthers from Honglian cytoplasmic male sterility line rice and its corresponding maintainer and hybrid. Bot Stud 48:293–309

    CAS  Google Scholar 

  • Wu XQ, Chen T, Zheng MZ, Chen YM, Teng NJ, Šamaj J, Baluška F, Lin JX (2008) Integrative proteomic and cytological analysis of the effects of extracellular Ca2+ influx on Pinus bungeana pollen tube development. J Proteome Res 7:4299–4312

    Article  CAS  PubMed  Google Scholar 

  • Wu ZM, Cheng JW, Qin C, Hu ZQ, Yin CX, Hu KL (2013) Differential proteomic analysis of anthers between cytoplasmic male sterile and maintainer lines in Capsicum annuum L. Int J Mol Sci 14:22982–22996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu YL, Min L, Wu ZC, Yang L, Zhu LF, Yang XY, Yuan DJ, Guo XP, Zhang XL (2015) Defective pollen wall contributes to male sterility in the male sterile line 1355A of cotton. Sci Rep 5:9608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan JJ, Zhang HY, Zheng YZ, Ding Y (2015) Comparative expression profiling of miRNAs between the cytoplasmic male sterile line MeixiangA and its maintainer line MeixiangB during rice anther development. Planta 241:109–123

    Article  CAS  PubMed  Google Scholar 

  • Yang LS, Xu XE, Liu XP, Jin H, Chen ZQ, Liu XH, Wang Y, Huang FP, Shi Q (2012) iTRAQ-based quantitative proteomic analysis for identification of oligodendroglioma biomarkers related with loss of heterozygosity on chromosomal arm 1p. J Proteom 77:480–491

    Article  CAS  Google Scholar 

  • Yang QL, Ou YT, Yan H, Yang J, Li L, Xia XH (2015) Research progress of pollen allergy. Chin Agric Sci Bull 31(24):163–167

    Google Scholar 

  • Ye QQ, Zhu WJ, Li L, Zhang SS, Yin YH, Ma H, Wang XL (2010) Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proc Natl Acad Sci USA 107(13):6100–6105

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeung EC, Oinam GS, Yeung SS, Harry I (2011) Anther, pollen and tapetum development in safflower, Carthamus tinctorius L. Sex Plant Reprod 24:307–317

    Article  PubMed  Google Scholar 

  • Yu JH, Zhao YX, Qin YT, Yue B, Zheng YL, Xiao HL (2013) Discovery of microRNAs associated with the S type cytoplasmic male sterility in maize. J Integr Agric 12(2):229–238

    Article  Google Scholar 

  • Zambon CR, de Oliveira da Silva LF, Pio R, Bianchini FG, de Oliveira AF (2018) Storage of pollen and properties of olive stigma for breeding purposes. Rev Ciênc Agron 49(2):291–297

    Article  Google Scholar 

  • Zhang DB, Yang L (2014) Specification of tapetum and microsporocyte cells within the anther. Curr Opin Plant Biol 17:49–55

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZS, Lu YG, Liu XD, Feng JH, Zhang GQ (2006) Cytological mechanism of pollen abortion resulting from allelic interaction of F1 pollen sterility locus in rice (Oryza sativa L.). Genetica 127:295–302

    Article  CAS  PubMed  Google Scholar 

  • Zhang DS, Liang WQ, Yuan Z, Li N, Shi J, Wang J, Liu YM, Yu WJ, Zhang DB (2008) Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol Plant 1(4):599–610

    Article  CAS  PubMed  Google Scholar 

  • Zhang DB, Luo X, Zhu L (2011) Cytological analysis and genetic control of rice anther development. J Genet Genom 38:379–390

    Article  CAS  Google Scholar 

  • Zhang CS, Norris-Caneda KH, Rottmann WH, Gulledge JE, Chang SJ, Kwan BYH, Thomas AM, Mandel LC, Kothera RT, Victor AD, Pearson L, Hinchee MAW (2012) Control of pollen-mediated gene flow in transgenic trees. Plant Physiol 159(4):1319–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang FJ, Hua LC, Fei JS, Wang F, Liao Y, Fang WM, Chen FD, Teng NJ (2016) Chromosome doubling to overcome the chrysanthemum cross barrier based on insight from transcriptomic and proteomic analyses. BMC Genom 7:585

    Article  CAS  Google Scholar 

  • Zhao HE, Liu ZH, Hu X, Yin JL, Li W, Rao GY, Zhang XH, Huang CL, Anderson N, Zhang QX, Chen JY (2009) Chrysanthemum genetic resources and related genera of Chrysanthemum collected in China. Genet Resour Crop Evol 56:937–946

    Article  CAS  Google Scholar 

  • Zhao XG, Zhang YW, Guan ZB, Wang LP, Cao Y, Zhao XZ, Chen WJ (2017) Application of pollen in plant genetic research. Chin Agric Sci Bull 33(13):54–59

    Google Scholar 

  • Zheng R, Yue SJ, Xu XY, Liu JY, Xu Q, Wang XL, Han L, Yu DY (2012) Proteome analysis of the wild and YX-1 male sterile mutant anthers of wolfberry (Lycium barbarum L.). PLoS ONE 7(7):e41861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu E, You CJ, Wang SS, Cui J, Niu BX, Wang YX, Qi J, Ma H, Chang F (2015) The DYT1-interacting proteins bHLH010, bHLH089 and bHLH091 are redundantly required for Arabidopsis anther development and transcriptome. Plant J 83:976–990

    Article  CAS  PubMed  Google Scholar 

  • Zieske LR (2006) A perspective on the use of iTRAQ™ reagent technology for protein complex and profiling studies. J Exp Bot 57(7):1501–1508

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31471901), the earmarked fund for Jiangsu Agricultural Industry Technology System (JATS[2018]006), the Natural Science Foundation of Jiangsu Province (BK20161449), and the Fundamental Research Funds for the Central Universities (KYTZ201602).

Author information

Authors and Affiliations

Authors

Contributions

NJT conceived and designed the experiments; WMF and FDC contributed to the research idea; FW, XHZ and LLH performed the experiments and analyzed the data; FW and XHZ wrote the paper; all authors read and approved the final manuscript.

Corresponding author

Correspondence to Nianjun Teng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1 Distribution of annotated species (TIF 441 KB)

11103_2018_777_MOESM2_ESM.tif

Supplementary Figure S2 Functional distribution of COG annotation. X axis represents the numbers of unigenes, Y axis represents the COG functional categories (TIF 9713 KB)

11103_2018_777_MOESM3_ESM.tif

Supplementary Figure S3 Functional distribution of GO annotation. X axis represents the numbers of unigenes, Y axis represents the GO functional categories (TIF 11127 KB)

11103_2018_777_MOESM4_ESM.tif

Supplementary Figure S4 CDS length distribution. X axis represents the lengths of CDS, Y axis represents the numbers of CDS (TIF 10602 KB)

11103_2018_777_MOESM5_ESM.tif

Supplementary Figure S5 Number statistics and MA plot of DEGs. a Number statistics of DEGs. X axis represents the expression patterns of DEGs, Y axis represents the numbers of DEGs. b MA plot of DEGs. X axis represents value A (log2 transformed mean expression level), Y axis represents value M (log2 transformed fold change). ‘Kingfisher-1’ represents pollen aborting stage, ‘Kingfisher-2’ represents pollen aborted stage (TIF 32893 KB)

11103_2018_777_MOESM6_ESM.tif

Supplementary Figure S6 Pathway functional enrichment of DEGs. X axis represents rich factors (rich factor = the number of DEGs in one pathway/the number of unigenes in this pathway), Y axis represents pathway names. Colorings indicate q-values (blue: high, black: low), the lower q-value indicates the more significant enrichment. Point sizes indicate the numbers of DEGs (big: more, small: less) (TIF 5951 KB)

11103_2018_777_MOESM7_ESM.tif

Supplementary Figure S7 Validation of RNA-Seq results by qRT-PCR. FPKM represents the expression level of the genes in the sequencing data (TIF 3336 KB)

Supplementary Table S1 (DOCX 13 KB)

Supplementary Table S2 KEGG annotation results of unigenes (XLS 1077 KB)

Supplementary Table S3 (DOCX 13 KB)

Supplementary Table S4 The different expression of unigenes (XLS 2874 KB)

Supplementary Table S5 KEGG annotation results of DEGs (XLS 510 KB)

Supplementary Table S6 131 DEGs classified into 7 categories (XLS 37 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Zhong, X., Huang, L. et al. Cellular and molecular characteristics of pollen abortion in chrysanthemum cv. Kingfisher. Plant Mol Biol 98, 233–247 (2018). https://doi.org/10.1007/s11103-018-0777-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-018-0777-y

Keywords

Navigation