Skip to main content
Log in

Two amino acid changes in the R3 repeat cause functional divergence of two clustered MYB10 genes in peach

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

R2R3-MYB genes play a pivotal role in regulating anthocyanin accumulation. Here, we report two tandemly duplicated R2R3-MYB genes in peach, PpMYB10.1 and PpMYB10.2, with the latter showing lower ability to induce anthocyanin accumulation than the former. Site-directed mutation assay revealed two amino acid changes in the R3 repeat, Arg/Lys66 and Gly/Arg93, responsible for functional divergence between these two PpMYB10 genes. Anthocyanin-promoting activity of PpMYB10.2 was significantly increased by a single amino acid replacement of Arg93 with Gly93. However, either the Gly93 → Arg93 or Arg66 → Lys66 substitutions alone showed little impact on anthocyanin-promoting activity of PpMYB10.1, but simultaneous substitutions caused a significant decrease. Reciprocal substitution of Arg/Gly93 could significantly alter binding affinity to PpbHLH3, while the Arg66 → Lys66 substitution is predicted to affect the folding of the MYB DNA-binding domain, instead of PpbHLH3-binding affinity. Overall, the change of anthocyanin-promoting activity was accompanied with that of bHLH-binding affinity, suggesting that DNA-binding affinity of R2R3-MYBs depends on their bHLH partners. Our study is helpful for understanding of functional evolution of R2R3-MYBs and their interaction with DNA targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albert NW, Lewis DH, Zhang H, Schwinn KE, Jameson PE, Davies KM (2011) Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant J 65:771–784

    Article  CAS  PubMed  Google Scholar 

  • Appelhagen I, Wulff-Vester AK, Wendell M, Hvoslef-Eide AK, Russell J, Oertel A, Martens S, Mock HP, Martin C, Matros A (2018) Colour bio-factories: towards scale-up production of anthocyanins in plant cell cultures. Metab Eng 48:218–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger F, Linstead P, Dolan L, Haseloff J (1998) Stomata patterning on the hypocotyl of Arabidopsis thaliana is controlled by genes involved in the control of root epidermis patterning. Dev Biol 194:226–234

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt C, Lee MM, Gonzalez A, Zhang F, Lloyd A, Schiefelbein J (2003) The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development 130:6431

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov VP, Avramenko TV, Tsitsiashvili GS (2017) Critical analysis of protein signaling networks involved in the regulation of plant secondary metabolism: focus on anthocyanins. Crit Rev Biotechnol 37:685–700

    Article  CAS  PubMed  Google Scholar 

  • Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EG, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P. Reforgiato-Recupero G, Martin C (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24:1242–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chagné D, Lin-Wang K, Espley RV, Volz RK, How NM, Rouse S, Brendolise C, Carlisle CM, Kumar S, De Silva N, Micheletti D, McGhie T, Crowhurst RN, Storey RD, Velasco R, Hellens RP, Gardiner SE, Allan AC (2013) An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol 161:225–239

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Wei G, Zhou H, Gu C, Vimolmangkang S, Liao L, Han Y (2014) Unraveling the mechanism underlying the glycosylation and methylation of anthocyanins in peach. Plant Physiol 166:1044–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho JS, Nguyen VP, Jeon HW, Kim MH, Eom SH, Lim YJ, Kim WC, Park EJ, Choi YI, Ko JH (2016) Overexpression of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar. Tree Physiol 36:1162–1176

    Article  CAS  PubMed  Google Scholar 

  • D’Amelia V, Aversano R, Ruggiero A, Batelli G, Appelhagen I, Dinacci C, Hill L, Martin C, Carputo D (2018) Subfunctionalization of duplicate MYB genes in Solanum commersonii generated the cold-induced ScAN2 and the anthocyanin regulator ScAN1. Plant Cell Environ 41:1038–1051

    Article  CAS  PubMed  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  PubMed  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espley RV, Bovy A, Bava C, Jaeger SR, Tomes S, Norling C, Crawford J, Rowan D, McGhie TK, Brendolise C, Putterill J, Schouten HJ, Hellens RP, Allan AC (2013) Analysis of genetically modified red-fleshed apples reveals effects on growth and consumer attributes. Plant Biotechnol J 11:408–419

    Article  CAS  PubMed  Google Scholar 

  • Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94–116

    Article  CAS  PubMed  Google Scholar 

  • Ganter B, Chao S, Lipsick J (1999) Transcriptional activation by the Myb proteins requires a specific local promoter structure. FEBS Lett 460:401–410

    Article  CAS  PubMed  Google Scholar 

  • Heppel SC, Jaffé FW, Takos AM, Schellmann S, Rausch T, Walker AR, Bogs J (2013) Identification of key amino acids for the evolution of promoter target specificity of anthocyanin and proanthocyanidin regulating MYB factors. Plant Mol Biol 82:457–471

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JM, Heine GF, Irani NG, Feller A, Kim MG, Matulnik T, Chandler VL, Grotewold E (2004) Different mechanisms participate in the R-dependent activity of the R2R3 MYB transcription factor C1. J Biol Chem 279:48205–48213

    Article  CAS  PubMed  Google Scholar 

  • Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011a) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62:2465–2483

    Article  CAS  PubMed  Google Scholar 

  • Hichri I, Deluc L, Barrieu F, Bogs J, Mahjoub A, Regad F, Gallois B, Granier T, Trossat-Magnin C, Gomès E, Lauvergeat V (2011b) A single amino acid change within the R2 domain of the VvMYB5b transcription factor modulates affinity for protein partners and target promoters selectivity. BMC Plant Biol 11:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hook B, Bernstein D, Zhang B, Wickens M (2005) RNA-protein interactions in the yeast three-hybrid system: affinity, sensitivity, and enhanced library screening. RNA 11:227–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia L, Clegg MT, Jiang T (2004) Evolutionary dynamics of the DNA-binding domains in putative R2R3-MYB genes identified from rice subspecies indica and japonica genomes. Plant Physiol 134:575–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang C, Gu X, Peterson T (2004) Identification of conserved gene structures and carboxy-terminal motifs in the Myb gene family of Arabidopsis and Oryza sativa L. ssp. indica. Genome Biol 5:R46

    Article  PubMed  PubMed Central  Google Scholar 

  • Ko ER, Ko D, Chen C, Lipsick JS (2008) A conserved acidic patch in the Myb domain is required for activation of an endogenous target gene and for chromatin binding. Mol Cancer 7:77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi S, Yamamoto NG, Hirochika H (2005) Association of VvmybA1 gene expression with anthocyanin production in grape (Vitis vinifera) skin-color mutants. J Jpn Soc Hortic Sci 74:196–203

    Article  CAS  Google Scholar 

  • Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C, Smeekens S, Tonelli C, Paz-Ares J, Weisshaar B (1998) Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J 16:263–276

    Article  CAS  PubMed  Google Scholar 

  • Lai B, Li XJ, Hu B, Qin YH, Huang XM, Wang HC, Hu GB (2014) LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis. PLoS ONE 9:e86293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MM, Schiefelbein J (2001) Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis. Development 128:1539–1546

    CAS  PubMed  Google Scholar 

  • Lloyd AM (1994) The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Dev Biol 166:740–754

    Article  PubMed  Google Scholar 

  • Matsui K, Umemura Y, Ohme-Takagi M (2008) AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J 55:954–967

    Article  CAS  PubMed  Google Scholar 

  • Neill SO, Gould KS (2003) Anthocyanins in leaves: light attenuators or antioxidants? Funct Plant Biol 30:865–873

    Article  CAS  Google Scholar 

  • Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L (2000) The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogata K, Morikawa S, Nakamura H, Sekikawa A, Inoue T, Kanai H, Sarai A, Ishii S, Nishimura Y (1994) Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell 79:639–648

    Article  CAS  PubMed  Google Scholar 

  • Prince VE, Pickett FB (2002) Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet 3:827–837

    Article  CAS  PubMed  Google Scholar 

  • Rahim MA, Busatto N, Trainotti L (2014) Regulation of anthocyanin biosynthesis in peach fruits. Planta 240:913–929

    Article  CAS  PubMed  Google Scholar 

  • Ramsay NA, Walker AR, Mooney M, Gray JC (2003) Two basic-helix-loop-helix genes (MYC-146 and GL3) from Arabidopsis can activate anthocyanin biosynthesis in a white-flowered Matthiola incana mutant. Plant Mol Biol 52:679–688

    Article  CAS  PubMed  Google Scholar 

  • Rein D, Schijlen E, Kooistra T, Herbers K, Verschuren L, Hall R, Sonnewald U, Bovy A, Kleemann R (2006) Transgenic flavonoid tomato intake reduces C-reactive protein in human C-reactive protein transgenic mice more than wild-type tomato. J Nutr 136:2331

    Article  CAS  PubMed  Google Scholar 

  • Rocha DMUP, Caldas APS, da Silva BP, Hermsdorff HHM, Alfenas RCG (2018) Effects of blueberry and cranberry consumption on type 2 diabetes glycemic control: A systematic review. Crit Rev Food Sci Nutr 18:1–13

    Article  CAS  Google Scholar 

  • Rowan DD, Cao M, Lin-Wang K, Cooney JM, Jensen DJ, Austin PT, Hunt MB, Norling C, Hellens RP, Schaffer RJ, Allan AC (2009) Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana. New Phytol 182:102–115

    Article  CAS  PubMed  Google Scholar 

  • Saw NMMT, Moser C, Martens S, Franceschi P (2017) Applying generalized additive models to unravel dynamic changes in anthocyanin biosynthesis in methyl jasmonate elicited grapevine (Vitis vinifera cv. Gamay) cell cultures. Hortic Res 4:17038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M (1995) Transcription factors, Myb and LexA, discriminate between DNA sequences by the same recognition mechanism. Proc Jpn Acad 71:27–31

    Article  CAS  Google Scholar 

  • Tanikawa J, Yasukawa T, Enari M, Ogata K, Nishimura Y, Ishii S, Sarai A (1993) Recognition of specific DNA sequences by the c-myb protooncogene product: role of three repeat units in the DNA-binding domain. Proc Natl Acad Sci USA 90:9320

    Article  CAS  PubMed  Google Scholar 

  • Tuan PA, Bai S, Yaegaki H, Tamura T, Hihara S, Moriguchi T, Oda K (2015) The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biol 15:280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuteja JH, Zabala G, Varala K, Hudson M, Vodkin LO (2009) Endogenous, tissue-specific short interfering RNAs silence the chalcone synthase gene family in Glycine max seed coats. Plant Cell 21:3063–3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uematsu C, Katayama H, Makino I, Inagaki A, Arakawa O, Martin C (2014) Peace, a MYB-like transcription factor, regulates petal pigmentation in flowering peach ‘Genpei’ bearing variegated and fully pigmented flowers. J Exp Bot 65:1081–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1337–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker AR, Lee E, Bogs J, McDavid DA, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772–785

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhao S, Gu C, Zhou Y, Zhou H, Ma J, Cheng J, Han YP (2013) Deep RNA-Seq uncovers the peach transcriptome landscape. Plant Mol Biol 83:365–377

    Article  CAS  PubMed  Google Scholar 

  • Williams CE, Grotewold E (1997) Differences between plant and animal Myb domains are fundamental for DNA binding activity, and chimeric Myb domains have novel DNA binding specificities. J Biol Chem 272:563–571

    Article  CAS  PubMed  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrolstad RE, Durst RW, Lee J (2005) Tracking color and pigment changes in anthocyanin products. Trends Food Sci Tech 16:423–428

    Article  CAS  Google Scholar 

  • Yang L, Ling W, Du Z, Chen Y, Li D, Deng S, Liu Z, Yang L (2017) Effects of anthocyanins on cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr 8:684–693

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao G, Ming M, Allan AC, Gu C, Li L, Wu X, Wang R, Chang Y, Qi K, Zhang S, Wu J (2017) Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. Plant J 92:437–451

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Iwasaka R, Kaneko T, Sato S, Tabata S, Sakuta M (2008) Functional differentiation of Lotus japonicus TT2s, R2R3-MYB transcription factors comprising a multigene family. Plant Cell Physiol 49:157–169

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Ma D, Constabel CP (2015) The MYB182 Protein down-regulates proanthocyanidin and anthocyanin biosynthesis in Poplar by repressing both structural and regulatory flavonoid genes. Plant Physiol 167:693–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130:4859–4869

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Zhou H, Lin-Wang K, Vimolmangkang S, Espley RV, Wang L, Allan AC, Han Y (2014) Transcriptome analysis and transient transformation suggest an ancient duplicated MYB transcription factor as a candidate gene for leaf red coloration in peach. BMC Plant Biol 14:388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Lin-Wang K, Wang H, Gu C, Dare AP, Espley RV, He H, Allan AC, Han Y (2015) Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. Plant J 82:105–121

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Peng Q, Zhao J, Owiti A, Ren F, Liao L, Wang L, Deng X, Jiang Q, Han Y (2016) Multiple R2R3-MYB transcription factors involved in the regulation of anthocyanin accumulation in peach flower. Front Plant Sci 7:1557

    PubMed  PubMed Central  Google Scholar 

  • Zhu HF, Fitzsimmons K, Khandelwal A, Kranz RG (2009) CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis. Mol Plant 2:790–802

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 31672134), the China Agriculture Research System (Grant No. CARS-30), and the Overseas Construction Plan for Science and Education Base, China-Africa Center for Research and Education, Chinese Academy of Sciences (SAJC201327).

Author information

Authors and Affiliations

Authors

Contributions

YH and HZ conceived and designed the experiments. HZ, LL, SX, FR, JZ, and LW performed the experiments. YH and HZ wrote the paper. CO and QJ revised the manuscript.

Corresponding author

Correspondence to Yuepeng Han.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 557 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Liao, L., Xu, S. et al. Two amino acid changes in the R3 repeat cause functional divergence of two clustered MYB10 genes in peach. Plant Mol Biol 98, 169–183 (2018). https://doi.org/10.1007/s11103-018-0773-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-018-0773-2

Keywords

Navigation