Skip to main content
Log in

Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

ZmPIF3 plays an important role in ABA-mediated regulation of stomatal closure in the control of water loss, and can improve both drought tolerance and did not affect the grain yield in the transgenic rice.

Abstract

Phytochrome-interacting factors (PIFs) are a subfamily of basic helix-loop-helix (bHLH) transcription factors and play important roles in regulating plant growth and development. In our previous study, overexpression of a maize PIFs family gene, ZmPIF3, improved drought tolerance in transgenic rice. In this study, measurement of water loss rate, transpiration rate, stomatal conductance, guard cell aperture, density and length of ZmPIF3 transgenic plants showed that ZmPIF3 can enhance water-saving and drought-resistance by decreasing stomatal aperture and reducing transpiration in both transgenic rice and transgenic Arabidopsis. Scrutiny of sensitivity to ABA showed that ZmPIF3 transgenic rice was hypersensitive to ABA, while the endogenous ABA level was not significantly changed. These results indicate that ZmPIF3 plays a major role in the ABA signaling pathway. In addition, DGE results further suggest that ZmPIF3 participates in the ABA signaling pathway and regulates stomatal aperture in rice. Comparison analysis of the phenotype, physiology, and transcriptome of ZmPIF3 transgenic rice compared to control plants further suggests that ZmPIF3 is a positive regulator of ABA signaling and enhances water-saving and drought-resistance traits by reducing stomatal openings to control water loss. Moreover, investigation of the agronomic traits of ZmPIF3 transgenic rice from four cultivating seasons showed that ZmPIF3 expression increased the tiller and panicle number and did not affect the grain yield in the transgenic rice. These results demonstrate that ZmPIF3 is a promising candidate gene in the transgenic breeding of water-saving and drought-resistant rice plants and crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bae G, Choi G (2008) Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol 59:281–311

    Article  PubMed  CAS  Google Scholar 

  • Boccalandro HE, Rugnone ML, Moreno JE, Ploschuk EL, Serna L, Yanovsky MJ, Casal JJ (2009) Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis. Plant Physiol 150:1083–1092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boursiac Y, Leran S, Corratge-Faillie C, Gojon A, Krouk G, Lacombe B (2013) ABA transport and transporters. Trends Plant Sci 18:325–333

    Article  PubMed  CAS  Google Scholar 

  • Castillon A, Shen H, Huq E (2007) Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci 12:514–521

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Chen W, Zhou J, He H, Chen LB, Chen HD, Deng XW (2012) Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Sci 193:8–17

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    Article  PubMed  CAS  Google Scholar 

  • Cordeiro AM, Figueiredo DD, Tepperman J, Borba AR, Lourenco T, Abreu IA, Ouwerkerk PBF, Quail PH, Oliveira MM, Saibo NJM (2016) Rice phytochrome-interacting factor protein OsPIF14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of phytochrome B. Biochim Biophys Acta 1859:393–404

    Article  PubMed  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid:emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot 55:205–212

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L. encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  • Ekanayake IJ, Datta SKD, Steponkus PL (1989) Spikelet sterility and flowering response of rice to water stress at anthesis. Ann Bot 63:257–264

    Article  Google Scholar 

  • Evans NH, McAinsh MR, Hetherington AM (2001) Calcium oscillations in higher plants. Curr Opin Plant Biol 4:415–420

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Jiang W, Dai Y, Xiao N, Zhang CQ, Li H, Lu Y, Wu MQ, Tao XY, Deng DX, Chen JM (2015) A maize phytochrome-interacting factor 3 improves drought and salt stress tolerance in rice. Plant Mol Biol 87:413–428

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Wu MQ, Zhang MJ, Jiang W, Ren XY, Liang EX, Zhang DP, Zhang CQ, Xiao N, Li Y, Dai Y, Chen JM (2018) A maize phytochrome-interacting factors protein ZmPIF1 enhances drought tolerance by inducing stomatal closure and improves grain yield in Oryza sativa. Plant Biotechnol J. https://doi.org/10.1111/pbi.12878

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez CV, Ibarra SE, Piccoli PN, Botto JF, Boccalandro HE (2012) Phytochrome B increases drought tolerance by enhancing ABA sensitivity in Arabidopsis thaliana. Plant Cell Environ 35:1958–1968

    Article  PubMed  CAS  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  PubMed  CAS  Google Scholar 

  • Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23:1805–1817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ji Q, Zhang L, Wang Y, Wang J (2009) Genome-wide analysis of basic leucine zipper transcription factor families in Arabidopsis thaliana, Oryza sativa and Populus trichocarpa. J Shanghai Univ 13:174–182

    Article  CAS  Google Scholar 

  • Kim T-H, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim H, Lee K, Hwang H, Bhatnagar N, Kim DY, Yoon IS, Byun MO, Kim ST, Jung KH, Kim BG (2014) Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression. J Exp Bot 65:453–464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kudo M, Kidokoro S, Yoshida T, Mizoi J, Todaka D, Fernie AR, Shinozaki K, Yamaguchi-Shinozaki K (2016) Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnol J 15:458–471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60

    Article  PubMed  Google Scholar 

  • Leivar P, Monte E (2014) PIFs: systems integrators in plant development. Plant Cell 26:56–78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leivar P, Quail PH (2011) PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci 16:19–28

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Qian Q, Fu ZM, Wang YH, Xiong GS, Zeng DL, Wang XQ, Liu XF, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003) Control of tillering in rice. Nature 422:618–621

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Zhang F, Zhou JJ, Chen F, Wang BS, Xie XZ (2012) Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice. Plant Mol Biol 78:289–300

    Article  PubMed  CAS  Google Scholar 

  • Liu CT, Mao BG, Ou SJ, Wang W, Liu LC, Wu YB, Chu CC, Wang XP (2014) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol 84:19–36

    Article  PubMed  CAS  Google Scholar 

  • Lü PT, Kang M, Jiang XQ, Dai FW, Gao JP, Zhang CQ (2013) RhEXPA 4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis. Planta 237:1547–1559

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    PubMed  CAS  Google Scholar 

  • Marowa P, Ding AM, Kong YZ (2016) Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep 35:949–965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murata Y, Mori IC, Munemasa S (2015) Diverse stomatal signaling and the signal integration mechanism. Annu Rev Plant Biol 66:369–392

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  PubMed  CAS  Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2014) ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytol 202:35–49

    Article  PubMed  Google Scholar 

  • Pizzio GA, Rodriguez L, Antoni R, Gonzalez-Guzman M, Yunta C, Merilo E, Kollist H, Albert A, Rodriguez PL (2013) The PYL4 A194T mutant uncovers a key role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA interaction for abscisic acid signaling and plant drought resistance. Plant Physiol 163:441–455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramegowda V, Basu S, Krishnan A, Pereira A (2014) Rice GROWTH UNDER DROUGHT KINASE is required for drought tolerance and grain yield under normal and drought stress conditions. Plant Physiol 166:1634–1645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M, Arimura S, Miyao A, Hirochika H, Kamiya Y, Tsutsumi N, Nambara E, Nakazono M (2007) Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8′-hydroxylase in rice. Plant Cell Physiol 48:287–298

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658

    Article  PubMed  CAS  Google Scholar 

  • Seiler C, Harshavardhan VT, Reddy PS, Hensel G, Kumlehn J, Eschen-Lippold L, Rajesh K, Korzun V, Wobus U, Lee J, Selvaraj G, Sreenivasulu N (2014) Abscisic acid flux alterations result in differential abscisic acid signaling responses and impact assimilation efficiency in barley under terminal drought stress. Plant Physiol 164:1677–1696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sirichandra C, Wasilewska A, Vlad F, Valon C, Leung J (2009) The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. J Exp Bot 60:1439–1463

    Article  PubMed  CAS  Google Scholar 

  • Staneloni RJ, Rodriguez-Batiller MJ, Casal JJ (2008) Abscisic acid, high-light, and oxidative stress down-regulate a photosynthetic gene via a promoter motif not involved in phytochrome-mediated transcriptional regulation. Mol Plant 1:75–83

    Article  PubMed  CAS  Google Scholar 

  • Todaka D, Nakashima K, Maruyama K, Kidokoro S, Osakabe Y, Ito Y, Matsukura S, Fujita Y, Yoshiwara K, Ohme-Takagi M, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K (2012) Rice phytochrome-interacting factor-like protein OsPIL1 functions as a key regulator of internode elongation and induces a morphological response to drought stress. Proc Natl Acad Sci USA 109:15947–15952

    Article  PubMed  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang FF, Lian HL, Kang CY, Yang HQ (2010) Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana. Mol Plant 3:246–259

    Article  PubMed  CAS  Google Scholar 

  • Wang NL, Xiao BZ, Xiong LZ (2011) Identification of a cluster of PR4-like genes involved in stress responses in rice. J Plant Physiol 168:2212–2224

    Article  PubMed  CAS  Google Scholar 

  • Wei P, Chen S, Zhang X, Zhao P, Xiong Y, Wang W, Wang X (2011) An a-expansin, VfEXPA 1, is involved in regulation of stomatal movement in Vicia faba L. Chin Sci Bull 56:3531–3537

    Article  CAS  Google Scholar 

  • Wei SY, Hu W, Deng XM, Zhang YY, Liu XD, Zhao XD, Luo QC, Jin ZY, Li Y, Zhou SY, Sun T, Wang LZ, Yang GX, He GY (2014) A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biol 14:133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139

    Article  PubMed  CAS  Google Scholar 

  • Yu LH, Chen X, Wang Z, Wang SM, Wang YP, Zhu QS, Li SG, Xiang CB (2013) Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Plant Physiol 162:1378–1391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang XQ, Wei PC, Xiong YM, Yang Y, Chen J, Wang XC (2011) Overexpression of the Arabidopsis alpha-expansin gene AtEXPA 1 accelerates stomatal opening by decreasing the volumetric elastic modulus. Plant Cell Rep 30:27–36

    Article  PubMed  CAS  Google Scholar 

  • Zhang DP, Zhou Y, Yin JF, Yan XJ, Lin S, Xu WF, Baluška F, Wang YP, Xia YJ, Liang GH, Liang JS (2015) Rice G-protein subunits qPE9-1 and RGB1 play distinct roles in abscisic acid responses and drought adaptation. J Exp Bot 66:6371–6384

    Article  PubMed  CAS  Google Scholar 

  • Zhu GH, Ye NH, Zhang JH (2009) Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant Cell Physiol 50:644–651

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 31771686); Natural Science Foundation of the Jiangsu Province (No. BK20161334); State Key Laboratory of Crop Biology (No. 2016KF03). We also thank another financial support for the Priority Academic Program Development of Jiangsu Higher Education Institutions and State Key Laboratory of Crop Biology.

Author information

Authors and Affiliations

Authors

Contributions

YG and JC conceived and designed the experiments; YG, MW, MZ, WJ, EL, NX and CZ performed the experiments; YG, DZ and JC analyzed the data and wrote the paper.

Corresponding author

Correspondence to Jianmin Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7684 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Wu, M., Zhang, M. et al. Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty. Plant Mol Biol 97, 311–323 (2018). https://doi.org/10.1007/s11103-018-0739-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-018-0739-4

Keywords

Navigation