Skip to main content
Log in

The bHLH transcription factor ILR3 modulates multiple stress responses in Arabidopsis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

ILR3 and PYE function in a regulatory network that modulates GLS accumulation under iron deficiency.

Abstract

The molecular processes involved in the cross talk between iron (Fe) homeostasis and other metabolic processes in plants are poorly understood. In Arabidopsis thaliana the transcription factor IAA-LEUCINE RESISTANT3 (ILR3) regulates iron deficiency response, aliphatic glucosinolate (GLS) biosynthesis and pathogen response. ILR3 is also known to interact with its homolog, POPEYE (PYE), which also plays a role in Fe response. However, little is known about how ILR3 regulates such diverse processes, particularly, via its interaction with PYE. Since GLS are produced as part of a defense mechanism against wounding pathogens, we examined pILR3::β-GLUCURONIDASE expression and found that Fe deficiency enhances the wound-induced expression of ILR3 in roots and that ILR3 is induced in response to the wounding pathogen, sugarbeet root cyst nematode (Heterodera schachtii). We also examined the expression pattern of genes involved in Fe homeostasis and aliphatic GLS biosynthesis in pye-1, ilr3-2 and pye-1xilr3-2 (pxi) mutants and found that ILR3 and PYE differentially regulate the expression of genes involved these processes under Fe deficiency. We measured GLS levels and sugarbeet root cyst nematode infection rates under varying Fe conditions, and found that long-chain GLS levels are elevated in ilr3-2 and pxi mutants. This increase in long-chain GLS accumulation is correlated with elevated nematode resistance in ilr3-2 and pxi mutants in the absence of Fe. Our findings suggest that ILR3 and PYE function in a regulatory network that controls wounding pathogen response in plant roots by modulating GLS accumulation under iron deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Fe:

Iron

bHLH TF:

Basic helix-loop-helix transcription factor

ILR3:

IAA-LEUCINE RESISTANT3

PYE:

POPEYE

GLS:

Glucosinolates

BAT5:

Bile acid transporter 5

MAM1:

Methylthioalkylmalate synthase1

CYP81A:

Cytochrome P450 81A

References

  • Ali MA, Wieczorek K, Kreil DP, Bohlmann H (2014) The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots. PLoS ONE 9:e102360

    Article  PubMed  PubMed Central  Google Scholar 

  • An YQ, Huang S, McDowell JM, McKinney EC, Meagher RB (1996) Conserved expression of the Arabidopsis ACT1 and ACT 3 actin subclass in organ primordia and mature pollen. Plant Cell 8:15–30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andersen TG, Nour-Eldin HH, Fuller VL, Olsen CE, Burow M, Halkier BA (2013) Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis. Plant Cell 25:3133–3145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aparicio F, Pallas V (2017) The coat protein of Alfalfa mosaic virus interacts and interferes with the transcriptional activity of the bHLH transcription factor ILR3 promoting salicylic acid-dependent defence signalling response. Mol Plant Pathol 18:173–186

    Article  PubMed  CAS  Google Scholar 

  • Bak S, Feyereisen R (2001) The involvement of two p450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127:108–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Briat JF, Dubos C, Gaymard F (2015) Iron nutrition, biomass production, and plant product quality. Trends Plant Sci 20:33–40

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Kurle JE, Stetina SR, Miller DR, Klossner LD, Nelson GA, Hansen NC (2007) Interactions between iron-deficiency chlorosis and soybean cyst nematode in Minnesota soybean fields. Plant Soil 299:131–139

    Article  CAS  Google Scholar 

  • Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16:3400–3412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding X, Shields J, Allen R, Hussey RS (1998) A secretory cellulose-binding protein cDNA cloned from the root-knot nematode (Meloidogyne incognita). Mol Plant Microbe Interact 11:952–959

    Article  PubMed  CAS  Google Scholar 

  • Gigolashvili T, Yatusevich R, Rollwitz I, Humphry M, Gershenzon J, Flugge UI (2009) The plastidic bile acid Transporter 5 Is required for the biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana. Plant Cell 21:1813–1829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goellner M, Wang X, Davis EL (2001) Endo-beta-1,4-glucanase expression in compatible plant-nematode interactions. Plant Cell 13:2241–2255

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gollhofer J, Timofeev R, Lan P, Schmidt W, Buckhout TJ (2014) Vacuolar-Iron-Transporter1-Like proteins mediate iron homeostasis in Arabidopsis. PLoS ONE 9:e110468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20:735–747

    Article  PubMed  CAS  Google Scholar 

  • Henriques R, Jasik J, Klein M, Martinoia E, Feller U, Schell J, Pais MS, Koncz C (2002) Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Mol Biol 50:587–597

    Article  PubMed  CAS  Google Scholar 

  • Hewezi T, Howe PJ, Maier TR, Hussey RS, Mitchum MG, Davis EL, Baum TJ (2010) Arabidopsis spermidine synthase is targeted by an effector protein of the cyst nematode Heterodera schachtii. Plant Physiol 152:968–984

    Article  PubMed  PubMed Central  Google Scholar 

  • Kieu NP, Aznar A, Segond D, Rigault M, Simond-Cote E, Kunz C, Soulie MC, Expert D, Dellagi A (2012) Iron deficiency affects plant defence responses and confers resistance to Dickeya dadantii and Botrytis cinerea. Mol Plant Pathol 13:816–827

    Article  PubMed  CAS  Google Scholar 

  • Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T (2001) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126:811–825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lazzeri L, Tacconi R, Palmieri S (1993) In vitro activity of some glucosinolates and their reaction products toward a population of the nematode Heterodera schachtii. J Agric Food Chem 41:825–829

    Article  CAS  Google Scholar 

  • Li BH, Gaudinier A, Tang M, Taylor-Teeples M, Nham NT, Ghaffari C, Benson DS, Steinmann M, Gray JA, Brady SM, Kliebenstein DJ (2014) Promoter-based integration in plant defense regulation. Plant Physiol 166:1803–1820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Zhang H, Ai Q, Liang G, Yu D (2016) Two bHLH transcription factors, bHLH34 and bHLH104, regulate iron homeostasis in Arabidopsis thaliana. Plant Physiol 170:2478–2493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang G, Zhang H, Li X, Ai Q, Yu D (2017) bHLH transcription factor bHLH115 regulates iron homeostasis in Arabidopsis thaliana. J Exp Bot 68:1743–1755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN (2010) The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 22:2219–2236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marschner H, Romheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9:695–713

    Article  CAS  Google Scholar 

  • Obayashi T, Aoki Y, Tadaka S, Kagaya Y, Kinoshita K (2017) ATTED-II in 2018: a plant coexpression database based on investigation of statistical property of the mutual rank index. Plant Cell Physiol 59:e3

    Article  PubMed Central  Google Scholar 

  • Patel N, Hamamouch N, Li C, Hussey R, Mitchum M, Baum T, Wang X, Davis EL (2008) Similarity and functional analyses of expressed parasitism genes in Heterodera schachtii and Heterodera glycines. J Nematol 40:299–310

    CAS  Google Scholar 

  • Rampey RA, Woodward AW, Hobbs BN, Tierney MP, Lahner B, Salt DE, Bartel B (2006) An Arabidopsis basic helix-loop-helix leucine zipper protein modulates metal homeostasis and auxin conjugate responsiveness. Genetics 174:1841–1857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ravet K, Touraine B, Boucherez J, Briat JF, Gaymard F, Cellier F (2009) Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J 57:400–412

    Article  PubMed  CAS  Google Scholar 

  • Redovnikovic IR, Glivetic T, Delonga K, Vorkapic-Furac J (2008) Glucosinolates and their potential role in plant. Period Biol 110:297–309

    CAS  Google Scholar 

  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697

    Article  PubMed  CAS  Google Scholar 

  • Schuler M, Rellan-Alvarez R, Fink-Straube C, Abadia J, Bauer P (2012) Nicotianamine functions in the Phloem-based transport of iron to sink organs, in pollen development and pollen tube growth in Arabidopsis. Plant Cell 24:2380–2400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Selote D, Samira R, Matthiadis A, Gillikin JW, Long TA (2015) Iron-binding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors. Plant Physiol 167:273–286

    Article  PubMed  CAS  Google Scholar 

  • Sivaguru M, Horst WJ (1998) The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize. Plant Physiol 116:155–163

    Article  PubMed Central  CAS  Google Scholar 

  • Takagi S, Nomoto K, Takemoto T (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J Plant Nutr 7:469–477

    Article  CAS  Google Scholar 

  • Team RDC (2014) R: A Language and Environment forStatistical Computing, R Project for Statistical Computing, Vienna

  • Textor S, Bartram S, Kroymann J, Falk KL, Hick A, Pickett JA, Gershenzon J (2004) Biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana: recombinant expression and characterization of methylthioalkylmalate synthase, the condensing enzyme of the chain-elongation cycle. Planta 218:1026–1035

    Article  PubMed  CAS  Google Scholar 

  • Vaughn SF (1999) Glucosinolates as natural pesticides. In: Cutler HG, Cutler SJ (eds) Biologically active natural products: agrochemicals. CRC Press, Boca Raton

    Google Scholar 

  • von Wirén N, Klair S, Bansal S, Briat J-F, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol 119:1107–1114

    Article  Google Scholar 

  • Wang N, Cui Y, Liu Y, Fan HJ, Du J, Huang ZA, Yuan YX, Wu HL, Ling HQ (2013) Requirement and functional redundancy of ib subgroup bhlh proteins for iron deficiency responses and uptake in Arabidopsis thaliana. Mol Plant 6:503–513

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y, Wu H, Wang N, Li J, Zhao W, Du J, Wang D, Ling HQ (2008) FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res 18:385–397

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Liu B, Li M, Feng D, Jin H, Wang P, Liu J, Xiong F, Wang J, Wang HB (2015) The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis. Plant Cell 27:787–805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zuchi S, Watanabe M, Hubberten HM, Bromke M, Osorio S, Fernie AR, Celletti S, Paolacci AR, Catarcione G, Ciaffi M, Hoefgen R, Astolfi S (2015) The interplay between sulfur and iron nutrition in tomato. Plant Physiol 169:2624–2639

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Bonnie Bartel (Rice University) for the distribution of pILR3:GUS seeds. We also thank Drs. Marcela Rojas-Pierce and Bob Franks (North Carolina State University) for critical reading of the manuscript. This work was supported by the US National Science Foundation (Grant No. #1120937), and the USDA National Institute of Food and Agriculture, Hatch Project (Accession No. 101090).

Author information

Authors and Affiliations

Authors

Contributions

TAL, RS, CL, and DK planned and designed the research; RS, BL and JWG performed experiments; CL and ED provided reagents, tools and guidance for experiments with Heterodera schachtii; RS, BL and CL analyzed data. RS and TAL wrote the manuscript with the input of DK, JWG and all other authors.

Corresponding author

Correspondence to Terri A. Long.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samira, R., Li, B., Kliebenstein, D. et al. The bHLH transcription factor ILR3 modulates multiple stress responses in Arabidopsis. Plant Mol Biol 97, 297–309 (2018). https://doi.org/10.1007/s11103-018-0735-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-018-0735-8

Keywords

Navigation