Skip to main content
Log in

The NIP Genes in Sugar Beet: Underlying Roles in Silicon Uptake and Growth Improvement

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silicon (Si) can stimulate plant growth and stress resistance. This study aimed at elucidating the physiological responses and molecular characterization of different NIP (nodulin 26-like intrinsic protein) genes in sugar beet. The addition of exogenous Si increased plant biomass and Si concentration in the root and shoot, implying that increased Si uptake has beneficial effects on sugar beet. The quantitative gene expression analysis showed a significant upregulation of the BvNIP5–1 gene in roots, while the BvNIP1–1, BvNIP6–1, BvNIP7–1, and BvNIP-type were unchanged following Si supplementation. It suggests that BvNIP5–1 is one of the genes localized in the plasma membrane responsible for Si uptake in sugar beet. Besides, the BvNIP5–1 gene contained promoter, transcription start site, transcription binding site, and PolyA at 800 bp, 528 bp, 557 bp, and 1637 bp, respectively. The MEME results further revealed the association of three motifs related to major intrinsic protein (MIP). In the phylogenetic tree, the BvNIP5–1 showed a close association with CqNIP5–1, AnNIP2–1 and SoNIP5–1. Interactome analysis showed functional partnership of aquaporin SIP1–2 and SIP2–1 genes with NIP genes in sugar beet. In addition, BvNIP5–1 possessed close association with several functional partners (BOR1, BOR1, NodGS, SIP1A, ACR3) and co-expressed genes (i.e., AtNIP5–1, AtBOR1, AtNodGS, AtSIP1A, AtACR3) of Arabidopsis thaliana mainly responsible for boron, arsenite, and aquaporin transport activity. NIP promoters revealed cis-regulatory elements linked to auxin, salicylic acid, and methyl jasmonate-responsive factors. These findings may advance our understanding of Si transporters underlying growth and stress tolerance in sugar beet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Islam W, Tayyab M, Khalil F, Hua Z, Huang Z, Chen H (2020) Silicon-mediated plant defense against pathogens and insect pests. Pestic Biochem Physiol 168:104641

    Article  CAS  PubMed  Google Scholar 

  2. Gaur S, Kumar J, Kumar D, Chauhan DK, Prasad SM, Srivastava PK (2020) Fascinating impact of silicon and silicon transporters in plants: a review. Ecotoxicol Environ Saf 202:110885

    Article  CAS  PubMed  Google Scholar 

  3. Ma JF, Goto S, Tamai K, Ichii M (2001) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol 127(4):1773–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ouellette S, Goyette MH, Labbé C, Laur J, Gaudreau L, Gosselin A, Dorais M, Deshmukh RK, Bélanger RR (2017) Silicon transporters and effects of silicon amendments in strawberry under high tunnel and field conditions. Front Plant Sci 8:949

    Article  PubMed  PubMed Central  Google Scholar 

  5. Guntzer F, Keller C, Meunier JD (2012) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32(1):201–213

    Article  Google Scholar 

  6. Montpetit J, Vivancos J, Mitani-Ueno N, Yamaji N, Remus-Borel W, Belzile F, Ma FJ, Belanger RR (2012) Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Mol Biol 79(1–2):35–46

    Article  CAS  PubMed  Google Scholar 

  7. Guerriero G, Hausman JF, Legay S (2016) Silicon and the plant extracellular matrix. Front Plant Sci 7:463

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kamran M, Parveen A, Ahmar S, Malik Z, Hussain S, Chattha MS, Saleem MH, Adil M, Heidari P, Chen JT (2019) An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. Int J Mol Sci 21(1):148

    Article  PubMed Central  CAS  Google Scholar 

  9. Rahman M, Ghosal A, Alam MF, Kabir AH (2016) Remediation of cadmium toxicity in field peas (Pisum sativum L.) through exogenous silicon. Ecotoxicol Environ Saf 135:165–172

    Article  PubMed  CAS  Google Scholar 

  10. Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives. Sinauer Associates, Sunderland, MA

    Google Scholar 

  11. Zargar, S. M., Mahajan, R., Bhat, J. A., Nazir, M., Deshmukh, R., 2019. Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 biotech 9(3), 73

  12. Cooke J, Leishman MR (2011) Is plant ecology more siliceous than we realise? Trends Plant Sci 16(2):61–68

    Article  CAS  PubMed  Google Scholar 

  13. Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environmental pollution (Barking, Essex: 1987) 147(2):422–428

    Article  CAS  Google Scholar 

  14. Van Bockhaven J, De Vleesschauwer D, Höfte M (2013) Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. J Exp Bot 64(5):1281–1293

    Article  PubMed  CAS  Google Scholar 

  15. Ghareeb H, Bozso Z, Ott PG, Repenning C, Stahl F, Wydra K (2011) Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiol Mol Plant Pathol 75:83–89

    Article  CAS  Google Scholar 

  16. Nwugo CC, Huerta AJ (2011) The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress. J Proteome Res 10:518–528

    Article  CAS  PubMed  Google Scholar 

  17. Zargar SM, Nazir M, Agrawal GK, Kim DW, Rakwal R (2010) Silicon in plant tolerance against environmental stressors: towards crop improvement using omics approaches. Current Proteomics 7:135–143

    Article  CAS  Google Scholar 

  18. Hwang SJ, Hamayun M, Kim HY, Na CI, Kim KU, Shin DH, Kim SY, Lee I-J (2007) Effect of nitrogen and silicon nutrition on bioactive gibberellin and growth of rice under field conditions. J Crop Sci Biotechnol 10:281–286

    Google Scholar 

  19. Lee SK, Sohn EY, Hamayun M, Yoon JY, Lee IJ (2010) Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agrofor Syst 80:333–340

    Article  Google Scholar 

  20. Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk MK (2011) Silicon enhances suberization and lignification in roots of rice (Oryza sativa). J Exp Bot 62:2001–2011

    Article  CAS  PubMed  Google Scholar 

  21. Brunings AM, Datnoff LE, Ma JF, Mitani N, Nagamura Y, Rathinasabapathi B, Kirst M (2009) Differential gene expression of rice in response to silicon and rice blast fungus Magnaporthe oryzae. Ann Appl Biol 155:161–170

    Article  CAS  Google Scholar 

  22. Bhat, J. A., Shivaraj, S. M., Singh, P., Navadagi, D. B., Tripathi, D. K., Dash, P. K., Solanke, A. U., Sonah, H., & Deshmukh, R., 2019. Role of silicon in mitigation of heavy metal stresses in crop plants. Plants 8(3), 71

  23. Kim, Y,H., Khan, A.L., Waqas, M., Lee, I.J. 2017. Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review Frontiers in Plant Science 8

  24. Martínez-Ballesta MC, Carvajal M (2016) Mutual interactions between aquaporins and membrane components. Front Plant Sci 7:1322

    Article  PubMed Central  Google Scholar 

  25. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440(7084):688–691

    Article  CAS  PubMed  Google Scholar 

  26. Maurel C, Boursiac Y, Luu DT, Santoni VR, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95:1321–1358

    Article  CAS  PubMed  Google Scholar 

  27. Gomes D, Agasse A, Thiebaud P, Delrot S, Geros H, Chaumont F (2009) Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim Biophys Acta Biomembr 1788:1213–1228

    Article  CAS  Google Scholar 

  28. Zangi R, Filella M (2012) Transport routes of metalloids into and out of the cell: a review of the current knowledge. Chemico Biol Interact 197:47–57

    Article  CAS  Google Scholar 

  29. Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010) Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol 153:1871–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alexandersson E, Fraysse L, Sjövall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484

    Article  CAS  PubMed  Google Scholar 

  31. Boursiac Y (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol 139:790–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular California Agricultural Experiment Station 347

  33. Sigrist CJ, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, Hulo N (2010) ROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res 38:D161–D166

    Article  CAS  PubMed  Google Scholar 

  34. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, von Mering C (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613

    Article  CAS  PubMed  Google Scholar 

  35. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Peer YV, Rouze P, Rombauts S (2002) Plant CARE, a data base of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Khan A, Kamran M, Imran M, Al-Harrasi A, Al-Rawahi A, Al-Amri I, Lee IJ, Khan AL (2019) Silicon and salicylic acid confer high-pH stress tolerance in tomato seedlings. Sci Rep 9(1):19788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Farooq MA, Ali S, Hameed A, Ishaque W, Mahmood K, Iqbal Z (2013) Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicol Environ Saf 96:242–249

    Article  CAS  PubMed  Google Scholar 

  38. Oliveira KR, Souza Junior JP, Bennett SJ, Checchio MV, Alves RC, Felisberto G, Prado RM, Gratão PL (2020) Exogenous silicon and salicylic acid applications improve tolerance to boron toxicity in field pea cultivars by intensifying antioxidant defence systems. Ecotoxicol Environ Saf 201:110778

    Article  CAS  PubMed  Google Scholar 

  39. Kong W, Yang S, Wang Y, Bendahmane M, Fu X (2017) Genome-wide identification and characterization of aquaporin gene family in Beta vulgaris. PeerJ 5:e3747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Pommerrenig B, Diehn TA, Bienert GP (2015) Metalloido-porins: essentiality of Nodulin 26-like intrinsic proteins in metalloid transport. Plant Sci 238:212–227

    Article  CAS  PubMed  Google Scholar 

  41. Deshmukh RK, Vivancos J, Guérin V, Sonah H, Labbé C, Belzile F, Bélanger RR (2013) Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol Biol 83:303–315

    Article  CAS  PubMed  Google Scholar 

  42. Wang Y, Li R, Li D, Jia X, Zhou D, Li J, Lyi SM, Hou S, Huang Y, Kochian LV, Liu J (2017) NIP1;2 is a plasma membrane-localized transporter mediating aluminum uptake, translocation, and tolerance in Arabidopsis. Proc Natl Acad Sci U S A 114(19):5047–5052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wong A, Gehring C, Irving HR (2015) Conserved functional motifs and homology modeling to predict hidden moonlighting functional sites. Frontiers Bioeng Biotech 3:82

    Article  Google Scholar 

  44. Tyerman SD, Niemietz CM (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173–194

    Article  CAS  PubMed  Google Scholar 

  45. Johanson, U., Danielson, J., 2010. Phylogeny of major intrinsic proteins, plant aquaporins: roles in water homeostasis, nutrition, and signaling processes. Bienert GP, Jahn TP. (Eds), MIPs and their role in the exchange of metalloids (1st edition), Landes bioscience springer, New York, pp. 19-31

  46. Abascal F, Irisarri I, Zardoya R (2014) Diversity and evolution of membrane intrinsic proteins. Biochim Biophys Acta 1840(5):1468–1481

    Article  CAS  PubMed  Google Scholar 

  47. Sato R, Maeshima M (2019) The ER-localized aquaporin SIP2;1 is involved in pollen germination and pollen tube elongation in Arabidopsis thaliana. Plant Mol Biol 100(3):335–349

    Article  CAS  PubMed  Google Scholar 

  48. Mousavi SR, Niknejad Y, Fallah H, Tari DB (2020) Methyl jasmonate alleviates arsenic toxicity in rice. Plant Cell Rep 39(8):1041–1060

    Article  CAS  PubMed  Google Scholar 

  49. Nair, A., Thulasiram, H. V., Bhargava, S., 2020. Role of jasmonate in modulation of mycorrhizae-induced resistance against fungal pathogens. Methods in molecular biology (Clifton, N.J.), 2085, 109–115

  50. Kurowska MM, Daszkowska-Golec A, Gajecka M, Kościelniak P, Bierza W, Szarejko I (2020) Methyl Jasmonate affects photosynthesis efficiency, expression of HvTIP genes and nitrogen homeostasis in barley. Int J Mol Sci 21(12):4335

    Article  CAS  PubMed Central  Google Scholar 

  51. Tripathi, D. K., Rai, P., Guerriero, G., Sharma, S., Corpas, F. J., & Singh, V. P. (2020). Silicon induces adventitious root formation in rice (Oryza sativa L.) under arsenate stress with the involvement of nitric oxide and indole-3-acetic acid. Journal of experimental botany, eraa488

  52. Rai KK, Pandey N, Rai SP (2020) Salicylic acid and nitric oxide signaling in plant heat stress. Physiol Plant 168(2):241–255

    CAS  PubMed  Google Scholar 

  53. Huda, A.K.M.N., Swaraz, A.M., Reza, M.A., Haque, M.A., Kabir, A.H., 2016. Remediation of chromium toxicity through exogenous salicylic acid in Rice (Oryza sativa L.). water air soil Pollut 227, 278

  54. Shen C, Yue R, Sun T, Zhang L, Yang Y, Wang H (2015) OsARF16, a transcription factor regulating auxin redistribution, is required for iron deficiency response in rice (Oryza sativa L.). Plant Sci 231:148–158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the University of Rajshahi, Bangladesh.

Availability of Data and Materials

Data are presented in the manuscript.

Funding

The work was not funded by any particular funding.

Author information

Authors and Affiliations

Authors

Contributions

MAR performed ICP-MS and qPCR analysis. AFMMH and MI performed bioinformatics analysis. MSA performed plant phenotype experiments. KL edited the manuscript. AHK prepared the draft manuscript and supervised the whole work.

Corresponding author

Correspondence to Ahmad Humayan Kabir.

Ethics declarations

Conflict of Interest

We have no conflict of interest.

Ethics Approval and Consent to Participate

We have no ethical conflict. All authors give their consent to participate in this manuscript.

Consent for Publication

All authors give their consent to publish this manuscript.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.A., Haque, A.M., Akther, M.S. et al. The NIP Genes in Sugar Beet: Underlying Roles in Silicon Uptake and Growth Improvement. Silicon 14, 3551–3562 (2022). https://doi.org/10.1007/s12633-021-01133-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01133-0

Keywords

Navigation